Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Lombardi
1
73 kgZülle
2
72 kgPetacchi
3
70 kgHeras
4
59 kgOlano
5
70 kgKoerts
6
78 kgPeña
8
65 kgCasero
9
72 kgGonzález
10
70 kgUllrich
11
73 kgHruška
12
62 kgSvorada
13
76 kgGarrido
14
70 kgCárdenas
15
59 kgHalgand
16
67 kgOdriozola
17
70 kgZanotti
19
70 kgBossoni
20
62 kgGonzález de Galdeano
23
73 kgZarrabeitia
24
63 kgRubiera
25
69 kg
1
73 kgZülle
2
72 kgPetacchi
3
70 kgHeras
4
59 kgOlano
5
70 kgKoerts
6
78 kgPeña
8
65 kgCasero
9
72 kgGonzález
10
70 kgUllrich
11
73 kgHruška
12
62 kgSvorada
13
76 kgGarrido
14
70 kgCárdenas
15
59 kgHalgand
16
67 kgOdriozola
17
70 kgZanotti
19
70 kgBossoni
20
62 kgGonzález de Galdeano
23
73 kgZarrabeitia
24
63 kgRubiera
25
69 kg
Weight (KG) →
Result →
78
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | LOMBARDI Giovanni | 73 |
2 | ZÜLLE Alex | 72 |
3 | PETACCHI Alessandro | 70 |
4 | HERAS Roberto | 59 |
5 | OLANO Abraham | 70 |
6 | KOERTS Jans | 78 |
8 | PEÑA Victor Hugo | 65 |
9 | CASERO Ángel Luis | 72 |
10 | GONZÁLEZ Santos | 70 |
11 | ULLRICH Jan | 73 |
12 | HRUŠKA Jan | 62 |
13 | SVORADA Ján | 76 |
14 | GARRIDO Martin Gerardo | 70 |
15 | CÁRDENAS Félix Rafael | 59 |
16 | HALGAND Patrice | 67 |
17 | ODRIOZOLA Jon | 70 |
19 | ZANOTTI Marco | 70 |
20 | BOSSONI Paolo | 62 |
23 | GONZÁLEZ DE GALDEANO Igor | 73 |
24 | ZARRABEITIA Mikel | 63 |
25 | RUBIERA José Luis | 69 |