Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Lombardi
1
73 kgHeras
2
59 kgZülle
3
72 kgPetacchi
4
70 kgOlano
5
70 kgCasero
6
72 kgPeña
8
65 kgGonzález
9
70 kgUllrich
10
73 kgHruška
11
62 kgSvorada
12
76 kgGarrido
13
70 kgRubiera
14
69 kgCárdenas
15
59 kgLaiseka
16
63 kgHalgand
17
67 kgOdriozola
18
70 kgZanotti
20
70 kgGonzález de Galdeano
21
73 kgBossoni
22
62 kgSastre
23
61 kg
1
73 kgHeras
2
59 kgZülle
3
72 kgPetacchi
4
70 kgOlano
5
70 kgCasero
6
72 kgPeña
8
65 kgGonzález
9
70 kgUllrich
10
73 kgHruška
11
62 kgSvorada
12
76 kgGarrido
13
70 kgRubiera
14
69 kgCárdenas
15
59 kgLaiseka
16
63 kgHalgand
17
67 kgOdriozola
18
70 kgZanotti
20
70 kgGonzález de Galdeano
21
73 kgBossoni
22
62 kgSastre
23
61 kg
Weight (KG) →
Result →
76
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LOMBARDI Giovanni | 73 |
2 | HERAS Roberto | 59 |
3 | ZÜLLE Alex | 72 |
4 | PETACCHI Alessandro | 70 |
5 | OLANO Abraham | 70 |
6 | CASERO Ángel Luis | 72 |
8 | PEÑA Victor Hugo | 65 |
9 | GONZÁLEZ Santos | 70 |
10 | ULLRICH Jan | 73 |
11 | HRUŠKA Jan | 62 |
12 | SVORADA Ján | 76 |
13 | GARRIDO Martin Gerardo | 70 |
14 | RUBIERA José Luis | 69 |
15 | CÁRDENAS Félix Rafael | 59 |
16 | LAISEKA Roberto | 63 |
17 | HALGAND Patrice | 67 |
18 | ODRIOZOLA Jon | 70 |
20 | ZANOTTI Marco | 70 |
21 | GONZÁLEZ DE GALDEANO Igor | 73 |
22 | BOSSONI Paolo | 62 |
23 | SASTRE Carlos | 61 |