Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Lombardi
1
73 kgPetacchi
2
70 kgHeras
3
59 kgZülle
4
72 kgCasero
5
72 kgOlano
6
70 kgPeña
8
65 kgGarrido
9
70 kgGonzález
10
70 kgUllrich
11
73 kgHruška
12
62 kgSvorada
13
76 kgRubiera
15
69 kgCárdenas
16
59 kgLaiseka
17
63 kgHalgand
18
67 kgOdriozola
19
70 kgZanotti
21
70 kgGonzález de Galdeano
22
73 kgBossoni
23
62 kgSastre
24
61 kg
1
73 kgPetacchi
2
70 kgHeras
3
59 kgZülle
4
72 kgCasero
5
72 kgOlano
6
70 kgPeña
8
65 kgGarrido
9
70 kgGonzález
10
70 kgUllrich
11
73 kgHruška
12
62 kgSvorada
13
76 kgRubiera
15
69 kgCárdenas
16
59 kgLaiseka
17
63 kgHalgand
18
67 kgOdriozola
19
70 kgZanotti
21
70 kgGonzález de Galdeano
22
73 kgBossoni
23
62 kgSastre
24
61 kg
Weight (KG) →
Result →
76
59
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | LOMBARDI Giovanni | 73 |
2 | PETACCHI Alessandro | 70 |
3 | HERAS Roberto | 59 |
4 | ZÜLLE Alex | 72 |
5 | CASERO Ángel Luis | 72 |
6 | OLANO Abraham | 70 |
8 | PEÑA Victor Hugo | 65 |
9 | GARRIDO Martin Gerardo | 70 |
10 | GONZÁLEZ Santos | 70 |
11 | ULLRICH Jan | 73 |
12 | HRUŠKA Jan | 62 |
13 | SVORADA Ján | 76 |
15 | RUBIERA José Luis | 69 |
16 | CÁRDENAS Félix Rafael | 59 |
17 | LAISEKA Roberto | 63 |
18 | HALGAND Patrice | 67 |
19 | ODRIOZOLA Jon | 70 |
21 | ZANOTTI Marco | 70 |
22 | GONZÁLEZ DE GALDEANO Igor | 73 |
23 | BOSSONI Paolo | 62 |
24 | SASTRE Carlos | 61 |