Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Lombardi
1
73 kgPetacchi
2
70 kgHeras
3
59 kgZülle
4
72 kgPeña
5
65 kgCasero
6
72 kgOlano
7
70 kgHalgand
8
67 kgGarrido
9
70 kgPiccoli
10
64 kgBossoni
11
62 kgGonzález
12
70 kgHruška
14
62 kgSvorada
15
76 kgRubiera
17
69 kgCárdenas
18
59 kgLaiseka
19
63 kgOdriozola
20
70 kgZanotti
22
70 kgGonzález de Galdeano
23
73 kgSastre
24
61 kg
1
73 kgPetacchi
2
70 kgHeras
3
59 kgZülle
4
72 kgPeña
5
65 kgCasero
6
72 kgOlano
7
70 kgHalgand
8
67 kgGarrido
9
70 kgPiccoli
10
64 kgBossoni
11
62 kgGonzález
12
70 kgHruška
14
62 kgSvorada
15
76 kgRubiera
17
69 kgCárdenas
18
59 kgLaiseka
19
63 kgOdriozola
20
70 kgZanotti
22
70 kgGonzález de Galdeano
23
73 kgSastre
24
61 kg
Weight (KG) →
Result →
76
59
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | LOMBARDI Giovanni | 73 |
2 | PETACCHI Alessandro | 70 |
3 | HERAS Roberto | 59 |
4 | ZÜLLE Alex | 72 |
5 | PEÑA Victor Hugo | 65 |
6 | CASERO Ángel Luis | 72 |
7 | OLANO Abraham | 70 |
8 | HALGAND Patrice | 67 |
9 | GARRIDO Martin Gerardo | 70 |
10 | PICCOLI Mariano | 64 |
11 | BOSSONI Paolo | 62 |
12 | GONZÁLEZ Santos | 70 |
14 | HRUŠKA Jan | 62 |
15 | SVORADA Ján | 76 |
17 | RUBIERA José Luis | 69 |
18 | CÁRDENAS Félix Rafael | 59 |
19 | LAISEKA Roberto | 63 |
20 | ODRIOZOLA Jon | 70 |
22 | ZANOTTI Marco | 70 |
23 | GONZÁLEZ DE GALDEANO Igor | 73 |
24 | SASTRE Carlos | 61 |