Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Lombardi
1
73 kgPetacchi
2
70 kgHeras
3
59 kgLaiseka
4
63 kgCasero
7
72 kgOdriozola
8
70 kgZülle
9
72 kgHervé
10
62 kgPiccoli
11
64 kgPeña
12
65 kgOlano
13
70 kgBramati
14
72 kgHruška
16
62 kgGonzález
17
70 kgHalgand
18
67 kgGarrido
19
70 kgCárdenas
20
59 kgBossoni
21
62 kgSastre
23
61 kgRumšas
24
64 kgRubiera
25
69 kg
1
73 kgPetacchi
2
70 kgHeras
3
59 kgLaiseka
4
63 kgCasero
7
72 kgOdriozola
8
70 kgZülle
9
72 kgHervé
10
62 kgPiccoli
11
64 kgPeña
12
65 kgOlano
13
70 kgBramati
14
72 kgHruška
16
62 kgGonzález
17
70 kgHalgand
18
67 kgGarrido
19
70 kgCárdenas
20
59 kgBossoni
21
62 kgSastre
23
61 kgRumšas
24
64 kgRubiera
25
69 kg
Weight (KG) →
Result →
73
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | LOMBARDI Giovanni | 73 |
2 | PETACCHI Alessandro | 70 |
3 | HERAS Roberto | 59 |
4 | LAISEKA Roberto | 63 |
7 | CASERO Ángel Luis | 72 |
8 | ODRIOZOLA Jon | 70 |
9 | ZÜLLE Alex | 72 |
10 | HERVÉ Pascal | 62 |
11 | PICCOLI Mariano | 64 |
12 | PEÑA Victor Hugo | 65 |
13 | OLANO Abraham | 70 |
14 | BRAMATI Davide | 72 |
16 | HRUŠKA Jan | 62 |
17 | GONZÁLEZ Santos | 70 |
18 | HALGAND Patrice | 67 |
19 | GARRIDO Martin Gerardo | 70 |
20 | CÁRDENAS Félix Rafael | 59 |
21 | BOSSONI Paolo | 62 |
23 | SASTRE Carlos | 61 |
24 | RUMŠAS Raimondas | 64 |
25 | RUBIERA José Luis | 69 |