Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Heras
1
59 kgLombardi
2
73 kgPetacchi
3
70 kgPiccoli
4
64 kgLaiseka
5
63 kgCasero
7
72 kgOdriozola
8
70 kgGonzález
10
70 kgZülle
12
72 kgHervé
13
62 kgPeña
14
65 kgOlano
15
70 kgBramati
16
72 kgHalgand
17
67 kgHruška
18
62 kgCárdenas
19
59 kgRumšas
20
64 kgGarrido
21
70 kgSimoni
22
59 kgRubiera
23
69 kgSastre
24
61 kgBossoni
25
62 kg
1
59 kgLombardi
2
73 kgPetacchi
3
70 kgPiccoli
4
64 kgLaiseka
5
63 kgCasero
7
72 kgOdriozola
8
70 kgGonzález
10
70 kgZülle
12
72 kgHervé
13
62 kgPeña
14
65 kgOlano
15
70 kgBramati
16
72 kgHalgand
17
67 kgHruška
18
62 kgCárdenas
19
59 kgRumšas
20
64 kgGarrido
21
70 kgSimoni
22
59 kgRubiera
23
69 kgSastre
24
61 kgBossoni
25
62 kg
Weight (KG) →
Result →
73
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HERAS Roberto | 59 |
2 | LOMBARDI Giovanni | 73 |
3 | PETACCHI Alessandro | 70 |
4 | PICCOLI Mariano | 64 |
5 | LAISEKA Roberto | 63 |
7 | CASERO Ángel Luis | 72 |
8 | ODRIOZOLA Jon | 70 |
10 | GONZÁLEZ Santos | 70 |
12 | ZÜLLE Alex | 72 |
13 | HERVÉ Pascal | 62 |
14 | PEÑA Victor Hugo | 65 |
15 | OLANO Abraham | 70 |
16 | BRAMATI Davide | 72 |
17 | HALGAND Patrice | 67 |
18 | HRUŠKA Jan | 62 |
19 | CÁRDENAS Félix Rafael | 59 |
20 | RUMŠAS Raimondas | 64 |
21 | GARRIDO Martin Gerardo | 70 |
22 | SIMONI Gilberto | 59 |
23 | RUBIERA José Luis | 69 |
24 | SASTRE Carlos | 61 |
25 | BOSSONI Paolo | 62 |