Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Di Luca
1
61 kgZabel
2
69 kgCamenzind
3
62 kgEdo
4
64 kgNieto
5
68 kgBossoni
6
62 kgLoda
7
73 kgBeloki
8
68 kgGonzález
9
69 kgGuillamón
10
62 kgLelli
11
69 kgClain
12
59 kgGonzález
13
70 kgDi Grande
14
58 kgOsa
15
64 kgLastras
16
68 kgSevilla
17
62 kgMartín Perdiguero
18
63 kgBruylandts
20
63 kg
1
61 kgZabel
2
69 kgCamenzind
3
62 kgEdo
4
64 kgNieto
5
68 kgBossoni
6
62 kgLoda
7
73 kgBeloki
8
68 kgGonzález
9
69 kgGuillamón
10
62 kgLelli
11
69 kgClain
12
59 kgGonzález
13
70 kgDi Grande
14
58 kgOsa
15
64 kgLastras
16
68 kgSevilla
17
62 kgMartín Perdiguero
18
63 kgBruylandts
20
63 kg
Weight (KG) →
Result →
73
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | DI LUCA Danilo | 61 |
2 | ZABEL Erik | 69 |
3 | CAMENZIND Oscar | 62 |
4 | EDO Ángel | 64 |
5 | NIETO Germán | 68 |
6 | BOSSONI Paolo | 62 |
7 | LODA Nicola | 73 |
8 | BELOKI Joseba | 68 |
9 | GONZÁLEZ Aitor | 69 |
10 | GUILLAMÓN Juan Carlos | 62 |
11 | LELLI Massimiliano | 69 |
12 | CLAIN Médéric | 59 |
13 | GONZÁLEZ Santos | 70 |
14 | DI GRANDE Giuseppe | 58 |
15 | OSA Aitor | 64 |
16 | LASTRAS Pablo | 68 |
17 | SEVILLA Óscar | 62 |
18 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
20 | BRUYLANDTS Dave | 63 |