Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Zabel
1
69 kgCipollini
2
77 kgDi Luca
3
61 kgEdo
4
64 kgPetacchi
5
70 kgCamenzind
6
62 kgFreire
7
63 kgGuillamón
8
62 kgNieto
9
68 kgBossoni
10
62 kgTeutenberg
11
66 kgLoda
12
73 kgKlemenčič
13
69 kgBeloki
14
68 kgGonzález
15
69 kgGarrido
16
70 kgLelli
17
69 kgClain
18
59 kgSvorada
19
76 kgGonzález
20
70 kgSacchi
22
68 kgPiccoli
23
64 kgVan Goolen
24
70 kgDi Grande
25
58 kg
1
69 kgCipollini
2
77 kgDi Luca
3
61 kgEdo
4
64 kgPetacchi
5
70 kgCamenzind
6
62 kgFreire
7
63 kgGuillamón
8
62 kgNieto
9
68 kgBossoni
10
62 kgTeutenberg
11
66 kgLoda
12
73 kgKlemenčič
13
69 kgBeloki
14
68 kgGonzález
15
69 kgGarrido
16
70 kgLelli
17
69 kgClain
18
59 kgSvorada
19
76 kgGonzález
20
70 kgSacchi
22
68 kgPiccoli
23
64 kgVan Goolen
24
70 kgDi Grande
25
58 kg
Weight (KG) →
Result →
77
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | CIPOLLINI Mario | 77 |
3 | DI LUCA Danilo | 61 |
4 | EDO Ángel | 64 |
5 | PETACCHI Alessandro | 70 |
6 | CAMENZIND Oscar | 62 |
7 | FREIRE Óscar | 63 |
8 | GUILLAMÓN Juan Carlos | 62 |
9 | NIETO Germán | 68 |
10 | BOSSONI Paolo | 62 |
11 | TEUTENBERG Sven | 66 |
12 | LODA Nicola | 73 |
13 | KLEMENČIČ Zoran | 69 |
14 | BELOKI Joseba | 68 |
15 | GONZÁLEZ Aitor | 69 |
16 | GARRIDO Martin Gerardo | 70 |
17 | LELLI Massimiliano | 69 |
18 | CLAIN Médéric | 59 |
19 | SVORADA Ján | 76 |
20 | GONZÁLEZ Santos | 70 |
22 | SACCHI Fabio | 68 |
23 | PICCOLI Mariano | 64 |
24 | VAN GOOLEN Jurgen | 70 |
25 | DI GRANDE Giuseppe | 58 |