Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
O'Grady
1
73 kgZabel
2
69 kgFreire
3
63 kgPetacchi
4
70 kgValverde
5
61 kgLandis
6
68 kgMenchov
7
65 kgHeras
8
59 kgPiepoli
9
54 kgMancebo
10
64 kgNozal
11
70 kgBeltrán
12
60 kgGonzález
13
69 kgPeña
14
65 kgHorrillo
15
76 kgSastre
16
61 kgJoachim
18
82 kgHamilton
19
65 kgMartín Perdiguero
20
63 kgMoreni
21
65 kgFerrío
22
51 kgEvans
23
64 kgBarry
24
72 kg
1
73 kgZabel
2
69 kgFreire
3
63 kgPetacchi
4
70 kgValverde
5
61 kgLandis
6
68 kgMenchov
7
65 kgHeras
8
59 kgPiepoli
9
54 kgMancebo
10
64 kgNozal
11
70 kgBeltrán
12
60 kgGonzález
13
69 kgPeña
14
65 kgHorrillo
15
76 kgSastre
16
61 kgJoachim
18
82 kgHamilton
19
65 kgMartín Perdiguero
20
63 kgMoreni
21
65 kgFerrío
22
51 kgEvans
23
64 kgBarry
24
72 kg
Weight (KG) →
Result →
82
51
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | O'GRADY Stuart | 73 |
2 | ZABEL Erik | 69 |
3 | FREIRE Óscar | 63 |
4 | PETACCHI Alessandro | 70 |
5 | VALVERDE Alejandro | 61 |
6 | LANDIS Floyd | 68 |
7 | MENCHOV Denis | 65 |
8 | HERAS Roberto | 59 |
9 | PIEPOLI Leonardo | 54 |
10 | MANCEBO Francisco | 64 |
11 | NOZAL Isidro | 70 |
12 | BELTRÁN Manuel | 60 |
13 | GONZÁLEZ Aitor | 69 |
14 | PEÑA Victor Hugo | 65 |
15 | HORRILLO Pedro | 76 |
16 | SASTRE Carlos | 61 |
18 | JOACHIM Benoît | 82 |
19 | HAMILTON Tyler | 65 |
20 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
21 | MORENI Cristian | 65 |
22 | FERRÍO Jorge | 51 |
23 | EVANS Cadel | 64 |
24 | BARRY Michael | 72 |