Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Zabel
1
69 kgValverde
2
61 kgHeras
3
59 kgMancebo
4
64 kgPérez
5
61 kgNozal
6
70 kgSastre
7
61 kgPiepoli
8
54 kgHorrillo
9
76 kgGómez Marchante
10
60 kgPérez Rodríguez
11
67 kgGarzelli
12
62 kgBeltrán
13
60 kgCruz
14
66 kgCárdenas
15
59 kgFerrío
16
51 kgParra
17
62 kgMartín Perdiguero
18
63 kgPeña
19
65 kgJoachim
22
82 kgGarcía Quesada
24
63 kg
1
69 kgValverde
2
61 kgHeras
3
59 kgMancebo
4
64 kgPérez
5
61 kgNozal
6
70 kgSastre
7
61 kgPiepoli
8
54 kgHorrillo
9
76 kgGómez Marchante
10
60 kgPérez Rodríguez
11
67 kgGarzelli
12
62 kgBeltrán
13
60 kgCruz
14
66 kgCárdenas
15
59 kgFerrío
16
51 kgParra
17
62 kgMartín Perdiguero
18
63 kgPeña
19
65 kgJoachim
22
82 kgGarcía Quesada
24
63 kg
Weight (KG) →
Result →
82
51
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | VALVERDE Alejandro | 61 |
3 | HERAS Roberto | 59 |
4 | MANCEBO Francisco | 64 |
5 | PÉREZ Santiago | 61 |
6 | NOZAL Isidro | 70 |
7 | SASTRE Carlos | 61 |
8 | PIEPOLI Leonardo | 54 |
9 | HORRILLO Pedro | 76 |
10 | GÓMEZ MARCHANTE José Ángel | 60 |
11 | PÉREZ RODRÍGUEZ Luis | 67 |
12 | GARZELLI Stefano | 62 |
13 | BELTRÁN Manuel | 60 |
14 | CRUZ Antonio | 66 |
15 | CÁRDENAS Félix Rafael | 59 |
16 | FERRÍO Jorge | 51 |
17 | PARRA Iván Ramiro | 62 |
18 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
19 | PEÑA Victor Hugo | 65 |
22 | JOACHIM Benoît | 82 |
24 | GARCÍA QUESADA Carlos | 63 |