Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Zabel
1
69 kgLandis
2
68 kgPetacchi
3
70 kgBarry
4
72 kgPeña
5
65 kgFreire
6
63 kgBeltrán
7
60 kgO'Grady
8
73 kgvan Heeswijk
9
73 kgJoachim
10
82 kgZabriskie
11
67 kgHorrillo
12
76 kgCruz
14
66 kgZanotti
15
70 kgPiccoli
16
64 kgVinokourov
17
68 kgPütsep
18
69 kgKonečný
19
67 kgIsasi
20
70 kgBotero
21
75 kgFurlan
22
72 kgTankink
23
71 kgVan Goolen
24
70 kgEvans
25
64 kg
1
69 kgLandis
2
68 kgPetacchi
3
70 kgBarry
4
72 kgPeña
5
65 kgFreire
6
63 kgBeltrán
7
60 kgO'Grady
8
73 kgvan Heeswijk
9
73 kgJoachim
10
82 kgZabriskie
11
67 kgHorrillo
12
76 kgCruz
14
66 kgZanotti
15
70 kgPiccoli
16
64 kgVinokourov
17
68 kgPütsep
18
69 kgKonečný
19
67 kgIsasi
20
70 kgBotero
21
75 kgFurlan
22
72 kgTankink
23
71 kgVan Goolen
24
70 kgEvans
25
64 kg
Weight (KG) →
Result →
82
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | LANDIS Floyd | 68 |
3 | PETACCHI Alessandro | 70 |
4 | BARRY Michael | 72 |
5 | PEÑA Victor Hugo | 65 |
6 | FREIRE Óscar | 63 |
7 | BELTRÁN Manuel | 60 |
8 | O'GRADY Stuart | 73 |
9 | VAN HEESWIJK Max | 73 |
10 | JOACHIM Benoît | 82 |
11 | ZABRISKIE David | 67 |
12 | HORRILLO Pedro | 76 |
14 | CRUZ Antonio | 66 |
15 | ZANOTTI Marco | 70 |
16 | PICCOLI Mariano | 64 |
17 | VINOKOUROV Alexandre | 68 |
18 | PÜTSEP Erki | 69 |
19 | KONEČNÝ Tomáš | 67 |
20 | ISASI Iñaki | 70 |
21 | BOTERO Santiago | 75 |
22 | FURLAN Angelo | 72 |
23 | TANKINK Bram | 71 |
24 | VAN GOOLEN Jurgen | 70 |
25 | EVANS Cadel | 64 |