Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
O'Grady
1
73 kgZabel
2
69 kgPetacchi
3
70 kgFreire
4
63 kgValverde
5
61 kgMenchov
6
65 kgGonzález
7
69 kgLandis
8
68 kgJoachim
9
82 kgBeltrán
10
60 kgEvans
11
64 kgHorrillo
12
76 kgBarry
13
72 kgMancebo
15
64 kgFurlan
16
72 kgPeña
17
65 kgHeras
18
59 kgvan Heeswijk
19
73 kgPiepoli
20
54 kgSastre
21
61 kgNozal
22
70 kgCunego
23
58 kgCruz
24
66 kgPiccoli
25
64 kg
1
73 kgZabel
2
69 kgPetacchi
3
70 kgFreire
4
63 kgValverde
5
61 kgMenchov
6
65 kgGonzález
7
69 kgLandis
8
68 kgJoachim
9
82 kgBeltrán
10
60 kgEvans
11
64 kgHorrillo
12
76 kgBarry
13
72 kgMancebo
15
64 kgFurlan
16
72 kgPeña
17
65 kgHeras
18
59 kgvan Heeswijk
19
73 kgPiepoli
20
54 kgSastre
21
61 kgNozal
22
70 kgCunego
23
58 kgCruz
24
66 kgPiccoli
25
64 kg
Weight (KG) →
Result →
82
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | O'GRADY Stuart | 73 |
2 | ZABEL Erik | 69 |
3 | PETACCHI Alessandro | 70 |
4 | FREIRE Óscar | 63 |
5 | VALVERDE Alejandro | 61 |
6 | MENCHOV Denis | 65 |
7 | GONZÁLEZ Aitor | 69 |
8 | LANDIS Floyd | 68 |
9 | JOACHIM Benoît | 82 |
10 | BELTRÁN Manuel | 60 |
11 | EVANS Cadel | 64 |
12 | HORRILLO Pedro | 76 |
13 | BARRY Michael | 72 |
15 | MANCEBO Francisco | 64 |
16 | FURLAN Angelo | 72 |
17 | PEÑA Victor Hugo | 65 |
18 | HERAS Roberto | 59 |
19 | VAN HEESWIJK Max | 73 |
20 | PIEPOLI Leonardo | 54 |
21 | SASTRE Carlos | 61 |
22 | NOZAL Isidro | 70 |
23 | CUNEGO Damiano | 58 |
24 | CRUZ Antonio | 66 |
25 | PICCOLI Mariano | 64 |