Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
O'Grady
1
73 kgZabel
2
69 kgFreire
3
63 kgValverde
4
61 kgPetacchi
5
70 kgMenchov
6
65 kgGonzález
7
69 kgLandis
8
68 kgJoachim
9
82 kgHorrillo
10
76 kgBeltrán
11
60 kgMartín Perdiguero
12
63 kgHeras
13
59 kgEvans
14
64 kgBarry
16
72 kgMancebo
18
64 kgGarzelli
19
62 kgFurlan
20
72 kgPeña
21
65 kgvan Heeswijk
22
73 kgPiepoli
23
54 kgMoreni
24
65 kgCunego
25
58 kg
1
73 kgZabel
2
69 kgFreire
3
63 kgValverde
4
61 kgPetacchi
5
70 kgMenchov
6
65 kgGonzález
7
69 kgLandis
8
68 kgJoachim
9
82 kgHorrillo
10
76 kgBeltrán
11
60 kgMartín Perdiguero
12
63 kgHeras
13
59 kgEvans
14
64 kgBarry
16
72 kgMancebo
18
64 kgGarzelli
19
62 kgFurlan
20
72 kgPeña
21
65 kgvan Heeswijk
22
73 kgPiepoli
23
54 kgMoreni
24
65 kgCunego
25
58 kg
Weight (KG) →
Result →
82
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | O'GRADY Stuart | 73 |
2 | ZABEL Erik | 69 |
3 | FREIRE Óscar | 63 |
4 | VALVERDE Alejandro | 61 |
5 | PETACCHI Alessandro | 70 |
6 | MENCHOV Denis | 65 |
7 | GONZÁLEZ Aitor | 69 |
8 | LANDIS Floyd | 68 |
9 | JOACHIM Benoît | 82 |
10 | HORRILLO Pedro | 76 |
11 | BELTRÁN Manuel | 60 |
12 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
13 | HERAS Roberto | 59 |
14 | EVANS Cadel | 64 |
16 | BARRY Michael | 72 |
18 | MANCEBO Francisco | 64 |
19 | GARZELLI Stefano | 62 |
20 | FURLAN Angelo | 72 |
21 | PEÑA Victor Hugo | 65 |
22 | VAN HEESWIJK Max | 73 |
23 | PIEPOLI Leonardo | 54 |
24 | MORENI Cristian | 65 |
25 | CUNEGO Damiano | 58 |