Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Zabel
1
69 kgO'Grady
2
73 kgFreire
3
63 kgPetacchi
4
70 kgValverde
5
61 kgLandis
6
68 kgMenchov
7
65 kgPeña
8
65 kgBeltrán
9
60 kgHorrillo
10
76 kgGonzález
11
69 kgMancebo
12
64 kgJoachim
14
82 kgMartín Perdiguero
15
63 kgHamilton
16
65 kgNozal
17
70 kgHeras
18
59 kgMoreni
19
65 kgEvans
20
64 kgSastre
21
61 kgBarry
23
72 kgGarzelli
24
62 kgPaolini
25
66 kg
1
69 kgO'Grady
2
73 kgFreire
3
63 kgPetacchi
4
70 kgValverde
5
61 kgLandis
6
68 kgMenchov
7
65 kgPeña
8
65 kgBeltrán
9
60 kgHorrillo
10
76 kgGonzález
11
69 kgMancebo
12
64 kgJoachim
14
82 kgMartín Perdiguero
15
63 kgHamilton
16
65 kgNozal
17
70 kgHeras
18
59 kgMoreni
19
65 kgEvans
20
64 kgSastre
21
61 kgBarry
23
72 kgGarzelli
24
62 kgPaolini
25
66 kg
Weight (KG) →
Result →
82
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | O'GRADY Stuart | 73 |
3 | FREIRE Óscar | 63 |
4 | PETACCHI Alessandro | 70 |
5 | VALVERDE Alejandro | 61 |
6 | LANDIS Floyd | 68 |
7 | MENCHOV Denis | 65 |
8 | PEÑA Victor Hugo | 65 |
9 | BELTRÁN Manuel | 60 |
10 | HORRILLO Pedro | 76 |
11 | GONZÁLEZ Aitor | 69 |
12 | MANCEBO Francisco | 64 |
14 | JOACHIM Benoît | 82 |
15 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
16 | HAMILTON Tyler | 65 |
17 | NOZAL Isidro | 70 |
18 | HERAS Roberto | 59 |
19 | MORENI Cristian | 65 |
20 | EVANS Cadel | 64 |
21 | SASTRE Carlos | 61 |
23 | BARRY Michael | 72 |
24 | GARZELLI Stefano | 62 |
25 | PAOLINI Luca | 66 |