Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Zabel
1
69 kgO'Grady
2
73 kgFreire
3
63 kgPetacchi
4
70 kgValverde
5
61 kgLandis
6
68 kgMenchov
7
65 kgMancebo
8
64 kgHeras
9
59 kgNozal
10
70 kgPiepoli
11
54 kgBeltrán
12
60 kgGonzález
13
69 kgPeña
14
65 kgHorrillo
15
76 kgJoachim
16
82 kgSastre
17
61 kgMartín Perdiguero
18
63 kgHamilton
19
65 kgMoreni
20
65 kgEvans
21
64 kgBarry
22
72 kgGarzelli
24
62 kgPaolini
25
66 kg
1
69 kgO'Grady
2
73 kgFreire
3
63 kgPetacchi
4
70 kgValverde
5
61 kgLandis
6
68 kgMenchov
7
65 kgMancebo
8
64 kgHeras
9
59 kgNozal
10
70 kgPiepoli
11
54 kgBeltrán
12
60 kgGonzález
13
69 kgPeña
14
65 kgHorrillo
15
76 kgJoachim
16
82 kgSastre
17
61 kgMartín Perdiguero
18
63 kgHamilton
19
65 kgMoreni
20
65 kgEvans
21
64 kgBarry
22
72 kgGarzelli
24
62 kgPaolini
25
66 kg
Weight (KG) →
Result →
82
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | O'GRADY Stuart | 73 |
3 | FREIRE Óscar | 63 |
4 | PETACCHI Alessandro | 70 |
5 | VALVERDE Alejandro | 61 |
6 | LANDIS Floyd | 68 |
7 | MENCHOV Denis | 65 |
8 | MANCEBO Francisco | 64 |
9 | HERAS Roberto | 59 |
10 | NOZAL Isidro | 70 |
11 | PIEPOLI Leonardo | 54 |
12 | BELTRÁN Manuel | 60 |
13 | GONZÁLEZ Aitor | 69 |
14 | PEÑA Victor Hugo | 65 |
15 | HORRILLO Pedro | 76 |
16 | JOACHIM Benoît | 82 |
17 | SASTRE Carlos | 61 |
18 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
19 | HAMILTON Tyler | 65 |
20 | MORENI Cristian | 65 |
21 | EVANS Cadel | 64 |
22 | BARRY Michael | 72 |
24 | GARZELLI Stefano | 62 |
25 | PAOLINI Luca | 66 |