Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Petacchi
1
70 kgHeras
2
59 kgMenchov
3
65 kgSastre
4
61 kgZabel
5
69 kgMancebo
6
64 kgGarcía Quesada
7
63 kgPlaza
8
77 kgSánchez
9
65 kgHaussler
10
74 kgArdila
11
58 kgPereiro
12
67 kgLastras
13
68 kgSevilla
15
62 kgDanielson
16
58.5 kgCuesta
17
62 kgLaiseka
18
63 kgScarponi
19
62 kgZanotti
21
70 kgMercado
22
56 kgRodríguez
23
58 kgSimoni
24
59 kg
1
70 kgHeras
2
59 kgMenchov
3
65 kgSastre
4
61 kgZabel
5
69 kgMancebo
6
64 kgGarcía Quesada
7
63 kgPlaza
8
77 kgSánchez
9
65 kgHaussler
10
74 kgArdila
11
58 kgPereiro
12
67 kgLastras
13
68 kgSevilla
15
62 kgDanielson
16
58.5 kgCuesta
17
62 kgLaiseka
18
63 kgScarponi
19
62 kgZanotti
21
70 kgMercado
22
56 kgRodríguez
23
58 kgSimoni
24
59 kg
Weight (KG) →
Result →
77
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | PETACCHI Alessandro | 70 |
2 | HERAS Roberto | 59 |
3 | MENCHOV Denis | 65 |
4 | SASTRE Carlos | 61 |
5 | ZABEL Erik | 69 |
6 | MANCEBO Francisco | 64 |
7 | GARCÍA QUESADA Carlos | 63 |
8 | PLAZA Rubén | 77 |
9 | SÁNCHEZ Samuel | 65 |
10 | HAUSSLER Heinrich | 74 |
11 | ARDILA Mauricio Alberto | 58 |
12 | PEREIRO Óscar | 67 |
13 | LASTRAS Pablo | 68 |
15 | SEVILLA Óscar | 62 |
16 | DANIELSON Tom | 58.5 |
17 | CUESTA Iñigo | 62 |
18 | LAISEKA Roberto | 63 |
19 | SCARPONI Michele | 62 |
21 | ZANOTTI Marco | 70 |
22 | MERCADO Juan Miguel | 56 |
23 | RODRÍGUEZ Joaquim | 58 |
24 | SIMONI Gilberto | 59 |