Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Heras
1
59 kgPetacchi
2
70 kgMenchov
3
65 kgSastre
4
61 kgMancebo
5
64 kgZabel
6
69 kgGarcía Quesada
7
63 kgSánchez
8
65 kgArdila
9
58 kgPlaza
10
77 kgPereiro
11
67 kgSevilla
12
62 kgCuesta
14
62 kgLastras
15
68 kgDanielson
16
58.5 kgHaussler
17
74 kgScarponi
18
62 kgLaiseka
20
63 kgZanotti
21
70 kgMercado
22
56 kgRodríguez
23
58 kgSørensen
25
71 kg
1
59 kgPetacchi
2
70 kgMenchov
3
65 kgSastre
4
61 kgMancebo
5
64 kgZabel
6
69 kgGarcía Quesada
7
63 kgSánchez
8
65 kgArdila
9
58 kgPlaza
10
77 kgPereiro
11
67 kgSevilla
12
62 kgCuesta
14
62 kgLastras
15
68 kgDanielson
16
58.5 kgHaussler
17
74 kgScarponi
18
62 kgLaiseka
20
63 kgZanotti
21
70 kgMercado
22
56 kgRodríguez
23
58 kgSørensen
25
71 kg
Weight (KG) →
Result →
77
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HERAS Roberto | 59 |
2 | PETACCHI Alessandro | 70 |
3 | MENCHOV Denis | 65 |
4 | SASTRE Carlos | 61 |
5 | MANCEBO Francisco | 64 |
6 | ZABEL Erik | 69 |
7 | GARCÍA QUESADA Carlos | 63 |
8 | SÁNCHEZ Samuel | 65 |
9 | ARDILA Mauricio Alberto | 58 |
10 | PLAZA Rubén | 77 |
11 | PEREIRO Óscar | 67 |
12 | SEVILLA Óscar | 62 |
14 | CUESTA Iñigo | 62 |
15 | LASTRAS Pablo | 68 |
16 | DANIELSON Tom | 58.5 |
17 | HAUSSLER Heinrich | 74 |
18 | SCARPONI Michele | 62 |
20 | LAISEKA Roberto | 63 |
21 | ZANOTTI Marco | 70 |
22 | MERCADO Juan Miguel | 56 |
23 | RODRÍGUEZ Joaquim | 58 |
25 | SØRENSEN Nicki | 71 |