Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Heras
1
59 kgPetacchi
2
70 kgMenchov
3
65 kgSastre
4
61 kgMancebo
5
64 kgZabel
6
69 kgGarcía Quesada
7
63 kgSánchez
8
65 kgArdila
9
58 kgPlaza
10
77 kgHaussler
11
74 kgLastras
12
68 kgPereiro
13
67 kgSevilla
15
62 kgLaiseka
16
63 kgCuesta
17
62 kgDanielson
18
58.5 kgScarponi
19
62 kgZanotti
21
70 kgMercado
22
56 kgRodríguez
23
58 kgSørensen
25
71 kg
1
59 kgPetacchi
2
70 kgMenchov
3
65 kgSastre
4
61 kgMancebo
5
64 kgZabel
6
69 kgGarcía Quesada
7
63 kgSánchez
8
65 kgArdila
9
58 kgPlaza
10
77 kgHaussler
11
74 kgLastras
12
68 kgPereiro
13
67 kgSevilla
15
62 kgLaiseka
16
63 kgCuesta
17
62 kgDanielson
18
58.5 kgScarponi
19
62 kgZanotti
21
70 kgMercado
22
56 kgRodríguez
23
58 kgSørensen
25
71 kg
Weight (KG) →
Result →
77
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HERAS Roberto | 59 |
2 | PETACCHI Alessandro | 70 |
3 | MENCHOV Denis | 65 |
4 | SASTRE Carlos | 61 |
5 | MANCEBO Francisco | 64 |
6 | ZABEL Erik | 69 |
7 | GARCÍA QUESADA Carlos | 63 |
8 | SÁNCHEZ Samuel | 65 |
9 | ARDILA Mauricio Alberto | 58 |
10 | PLAZA Rubén | 77 |
11 | HAUSSLER Heinrich | 74 |
12 | LASTRAS Pablo | 68 |
13 | PEREIRO Óscar | 67 |
15 | SEVILLA Óscar | 62 |
16 | LAISEKA Roberto | 63 |
17 | CUESTA Iñigo | 62 |
18 | DANIELSON Tom | 58.5 |
19 | SCARPONI Michele | 62 |
21 | ZANOTTI Marco | 70 |
22 | MERCADO Juan Miguel | 56 |
23 | RODRÍGUEZ Joaquim | 58 |
25 | SØRENSEN Nicki | 71 |