Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
McGee
1
72 kgBertagnolli
2
63 kgMenchov
3
65 kgPetacchi
4
70 kgZabel
5
69 kgVerbrugghe
6
70 kgBoonen
7
82 kgHushovd
8
83 kgFlecha
9
72 kgVila
10
67 kgVicioso
11
60 kgSastre
12
61 kgDanielson
13
58.5 kgRodríguez
15
58 kgPlaza
17
77 kgvan Heeswijk
18
73 kgHeras
19
59 kgMartín Perdiguero
20
63 kgde la Fuente
21
67 kgBernabéu
23
66 kgGonzález
24
70 kgSteels
25
73 kg
1
72 kgBertagnolli
2
63 kgMenchov
3
65 kgPetacchi
4
70 kgZabel
5
69 kgVerbrugghe
6
70 kgBoonen
7
82 kgHushovd
8
83 kgFlecha
9
72 kgVila
10
67 kgVicioso
11
60 kgSastre
12
61 kgDanielson
13
58.5 kgRodríguez
15
58 kgPlaza
17
77 kgvan Heeswijk
18
73 kgHeras
19
59 kgMartín Perdiguero
20
63 kgde la Fuente
21
67 kgBernabéu
23
66 kgGonzález
24
70 kgSteels
25
73 kg
Weight (KG) →
Result →
83
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MCGEE Bradley | 72 |
2 | BERTAGNOLLI Leonardo | 63 |
3 | MENCHOV Denis | 65 |
4 | PETACCHI Alessandro | 70 |
5 | ZABEL Erik | 69 |
6 | VERBRUGGHE Rik | 70 |
7 | BOONEN Tom | 82 |
8 | HUSHOVD Thor | 83 |
9 | FLECHA Juan Antonio | 72 |
10 | VILA Francisco Javier | 67 |
11 | VICIOSO Ángel | 60 |
12 | SASTRE Carlos | 61 |
13 | DANIELSON Tom | 58.5 |
15 | RODRÍGUEZ Joaquim | 58 |
17 | PLAZA Rubén | 77 |
18 | VAN HEESWIJK Max | 73 |
19 | HERAS Roberto | 59 |
20 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
21 | DE LA FUENTE David | 67 |
23 | BERNABÉU David | 66 |
24 | GONZÁLEZ Santos | 70 |
25 | STEELS Tom | 73 |