Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Petacchi
1
70 kgMcGee
2
72 kgZabel
3
69 kgHushovd
4
83 kgBoonen
5
82 kgBertagnolli
6
63 kgMenchov
7
65 kgVerbrugghe
8
70 kgSteels
9
73 kgFlecha
11
72 kgVila
12
67 kgVicioso
13
60 kgEisel
14
74 kgSastre
15
61 kgZanotti
16
70 kgEdaleine
17
62 kgDanielson
18
58.5 kgRodríguez
19
58 kgHaselbacher
20
69 kgPlaza
22
77 kgvan Heeswijk
23
73 kgHeras
24
59 kgMartín Perdiguero
25
63 kg
1
70 kgMcGee
2
72 kgZabel
3
69 kgHushovd
4
83 kgBoonen
5
82 kgBertagnolli
6
63 kgMenchov
7
65 kgVerbrugghe
8
70 kgSteels
9
73 kgFlecha
11
72 kgVila
12
67 kgVicioso
13
60 kgEisel
14
74 kgSastre
15
61 kgZanotti
16
70 kgEdaleine
17
62 kgDanielson
18
58.5 kgRodríguez
19
58 kgHaselbacher
20
69 kgPlaza
22
77 kgvan Heeswijk
23
73 kgHeras
24
59 kgMartín Perdiguero
25
63 kg
Weight (KG) →
Result →
83
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | PETACCHI Alessandro | 70 |
2 | MCGEE Bradley | 72 |
3 | ZABEL Erik | 69 |
4 | HUSHOVD Thor | 83 |
5 | BOONEN Tom | 82 |
6 | BERTAGNOLLI Leonardo | 63 |
7 | MENCHOV Denis | 65 |
8 | VERBRUGGHE Rik | 70 |
9 | STEELS Tom | 73 |
11 | FLECHA Juan Antonio | 72 |
12 | VILA Francisco Javier | 67 |
13 | VICIOSO Ángel | 60 |
14 | EISEL Bernhard | 74 |
15 | SASTRE Carlos | 61 |
16 | ZANOTTI Marco | 70 |
17 | EDALEINE Christophe | 62 |
18 | DANIELSON Tom | 58.5 |
19 | RODRÍGUEZ Joaquim | 58 |
20 | HASELBACHER René | 69 |
22 | PLAZA Rubén | 77 |
23 | VAN HEESWIJK Max | 73 |
24 | HERAS Roberto | 59 |
25 | MARTÍN PERDIGUERO Miguel Ángel | 63 |