Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Hushovd
1
83 kgPetacchi
2
70 kgMcGee
3
72 kgZabel
4
69 kgMartín Perdiguero
5
63 kgBoonen
6
82 kgBertagnolli
7
63 kgMenchov
8
65 kgVerbrugghe
9
70 kgSteels
11
73 kgRodríguez
12
58 kgFlecha
13
72 kgEisel
15
74 kgVila
16
67 kgJufré
17
65 kgVicioso
18
60 kgGutiérrez
19
71 kgSastre
20
61 kgHeras
21
59 kgZanotti
22
70 kgEdaleine
23
62 kgDanielson
24
58.5 kg
1
83 kgPetacchi
2
70 kgMcGee
3
72 kgZabel
4
69 kgMartín Perdiguero
5
63 kgBoonen
6
82 kgBertagnolli
7
63 kgMenchov
8
65 kgVerbrugghe
9
70 kgSteels
11
73 kgRodríguez
12
58 kgFlecha
13
72 kgEisel
15
74 kgVila
16
67 kgJufré
17
65 kgVicioso
18
60 kgGutiérrez
19
71 kgSastre
20
61 kgHeras
21
59 kgZanotti
22
70 kgEdaleine
23
62 kgDanielson
24
58.5 kg
Weight (KG) →
Result →
83
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | PETACCHI Alessandro | 70 |
3 | MCGEE Bradley | 72 |
4 | ZABEL Erik | 69 |
5 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
6 | BOONEN Tom | 82 |
7 | BERTAGNOLLI Leonardo | 63 |
8 | MENCHOV Denis | 65 |
9 | VERBRUGGHE Rik | 70 |
11 | STEELS Tom | 73 |
12 | RODRÍGUEZ Joaquim | 58 |
13 | FLECHA Juan Antonio | 72 |
15 | EISEL Bernhard | 74 |
16 | VILA Francisco Javier | 67 |
17 | JUFRÉ Josep | 65 |
18 | VICIOSO Ángel | 60 |
19 | GUTIÉRREZ José Iván | 71 |
20 | SASTRE Carlos | 61 |
21 | HERAS Roberto | 59 |
22 | ZANOTTI Marco | 70 |
23 | EDALEINE Christophe | 62 |
24 | DANIELSON Tom | 58.5 |