Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hushovd
1
83 kgPetacchi
2
70 kgMenchov
3
65 kgMcGee
4
72 kgZabel
5
69 kgHeras
6
59 kgMartín Perdiguero
7
63 kgBoonen
9
82 kgBertagnolli
10
63 kgRodríguez
11
58 kgSastre
12
61 kgVerbrugghe
13
70 kgGarcía Quesada
14
63 kgSteels
16
73 kgFlecha
17
72 kgJufré
18
65 kgPiil
19
65 kgVila
20
67 kgVicioso
21
60 kgGutiérrez
22
71 kgZanotti
23
70 kgEdaleine
24
62 kgMercado
25
56 kg
1
83 kgPetacchi
2
70 kgMenchov
3
65 kgMcGee
4
72 kgZabel
5
69 kgHeras
6
59 kgMartín Perdiguero
7
63 kgBoonen
9
82 kgBertagnolli
10
63 kgRodríguez
11
58 kgSastre
12
61 kgVerbrugghe
13
70 kgGarcía Quesada
14
63 kgSteels
16
73 kgFlecha
17
72 kgJufré
18
65 kgPiil
19
65 kgVila
20
67 kgVicioso
21
60 kgGutiérrez
22
71 kgZanotti
23
70 kgEdaleine
24
62 kgMercado
25
56 kg
Weight (KG) →
Result →
83
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | PETACCHI Alessandro | 70 |
3 | MENCHOV Denis | 65 |
4 | MCGEE Bradley | 72 |
5 | ZABEL Erik | 69 |
6 | HERAS Roberto | 59 |
7 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
9 | BOONEN Tom | 82 |
10 | BERTAGNOLLI Leonardo | 63 |
11 | RODRÍGUEZ Joaquim | 58 |
12 | SASTRE Carlos | 61 |
13 | VERBRUGGHE Rik | 70 |
14 | GARCÍA QUESADA Carlos | 63 |
16 | STEELS Tom | 73 |
17 | FLECHA Juan Antonio | 72 |
18 | JUFRÉ Josep | 65 |
19 | PIIL Jakob Storm | 65 |
20 | VILA Francisco Javier | 67 |
21 | VICIOSO Ángel | 60 |
22 | GUTIÉRREZ José Iván | 71 |
23 | ZANOTTI Marco | 70 |
24 | EDALEINE Christophe | 62 |
25 | MERCADO Juan Miguel | 56 |