Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bennati
1
71 kgFreire
2
63 kgPetacchi
3
70 kgDavis
4
73 kgBoonen
5
82 kgClerc
6
71 kgFernández
7
71 kgZabel
8
69 kgMartias
9
71 kgChampion
10
70 kgDuque
11
59 kgMartínez
12
74 kgGreipel
13
80 kgUsov
14
63 kgLjungqvist
15
73 kgCalcagni
16
65 kgLequatre
17
64 kgRenshaw
18
74 kgRoy
19
70 kg
1
71 kgFreire
2
63 kgPetacchi
3
70 kgDavis
4
73 kgBoonen
5
82 kgClerc
6
71 kgFernández
7
71 kgZabel
8
69 kgMartias
9
71 kgChampion
10
70 kgDuque
11
59 kgMartínez
12
74 kgGreipel
13
80 kgUsov
14
63 kgLjungqvist
15
73 kgCalcagni
16
65 kgLequatre
17
64 kgRenshaw
18
74 kgRoy
19
70 kg
Weight (KG) →
Result →
82
59
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | BENNATI Daniele | 71 |
2 | FREIRE Óscar | 63 |
3 | PETACCHI Alessandro | 70 |
4 | DAVIS Allan | 73 |
5 | BOONEN Tom | 82 |
6 | CLERC Aurélien | 71 |
7 | FERNÁNDEZ Koldo | 71 |
8 | ZABEL Erik | 69 |
9 | MARTIAS Rony | 71 |
10 | CHAMPION Dimitri | 70 |
11 | DUQUE Leonardo Fabio | 59 |
12 | MARTÍNEZ Serafín | 74 |
13 | GREIPEL André | 80 |
14 | USOV Alexandre | 63 |
15 | LJUNGQVIST Marcus | 73 |
16 | CALCAGNI Patrick | 65 |
17 | LEQUATRE Geoffroy | 64 |
18 | RENSHAW Mark | 74 |
19 | ROY Jérémy | 70 |