Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Valverde
1
61 kgRebellin
2
63 kgBallan
3
73 kgVan Avermaet
4
74 kgPozzato
5
73 kgNocentini
6
60 kgZabel
7
69 kgBettini
8
58 kgGilbert
9
75 kgFlorencio
10
59 kgRoche
11
70 kgMartínez
12
70 kgArdila
13
58 kgSchumacher
14
71 kgDuque
15
59 kgKozontchuk
16
75 kgZandio
17
73 kgRosendo
18
66 kgIgnatiev
19
67 kgLandaluze
20
65 kgLloyd
21
62 kg
1
61 kgRebellin
2
63 kgBallan
3
73 kgVan Avermaet
4
74 kgPozzato
5
73 kgNocentini
6
60 kgZabel
7
69 kgBettini
8
58 kgGilbert
9
75 kgFlorencio
10
59 kgRoche
11
70 kgMartínez
12
70 kgArdila
13
58 kgSchumacher
14
71 kgDuque
15
59 kgKozontchuk
16
75 kgZandio
17
73 kgRosendo
18
66 kgIgnatiev
19
67 kgLandaluze
20
65 kgLloyd
21
62 kg
Weight (KG) →
Result →
75
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | VALVERDE Alejandro | 61 |
2 | REBELLIN Davide | 63 |
3 | BALLAN Alessandro | 73 |
4 | VAN AVERMAET Greg | 74 |
5 | POZZATO Filippo | 73 |
6 | NOCENTINI Rinaldo | 60 |
7 | ZABEL Erik | 69 |
8 | BETTINI Paolo | 58 |
9 | GILBERT Philippe | 75 |
10 | FLORENCIO Xavier | 59 |
11 | ROCHE Nicolas | 70 |
12 | MARTÍNEZ Egoi | 70 |
13 | ARDILA Mauricio Alberto | 58 |
14 | SCHUMACHER Stefan | 71 |
15 | DUQUE Leonardo Fabio | 59 |
16 | KOZONTCHUK Dmitry | 75 |
17 | ZANDIO Xabier | 73 |
18 | ROSENDO Jesús | 66 |
19 | IGNATIEV Mikhail | 67 |
20 | LANDALUZE Iñigo | 65 |
21 | LLOYD Matthew | 62 |