Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Hutarovich
1
71 kgCavendish
2
70 kgFarrar
3
73 kgPetacchi
4
70 kgCardoso
5
70 kgFernández
6
71 kgSwift
7
69 kgDelage
8
70 kgFörster
9
83 kgGalimzyanov
10
75 kgStauff
11
82 kgDumoulin
12
57 kgOffredo
13
69 kgRamírez
14
61 kgWalker
15
63 kgMata
16
72 kgHaedo
17
73 kgWeylandt
18
72 kg
1
71 kgCavendish
2
70 kgFarrar
3
73 kgPetacchi
4
70 kgCardoso
5
70 kgFernández
6
71 kgSwift
7
69 kgDelage
8
70 kgFörster
9
83 kgGalimzyanov
10
75 kgStauff
11
82 kgDumoulin
12
57 kgOffredo
13
69 kgRamírez
14
61 kgWalker
15
63 kgMata
16
72 kgHaedo
17
73 kgWeylandt
18
72 kg
Weight (KG) →
Result →
83
57
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | HUTAROVICH Yauheni | 71 |
2 | CAVENDISH Mark | 70 |
3 | FARRAR Tyler | 73 |
4 | PETACCHI Alessandro | 70 |
5 | CARDOSO Manuel Antonio Leal | 70 |
6 | FERNÁNDEZ Koldo | 71 |
7 | SWIFT Ben | 69 |
8 | DELAGE Mickaël | 70 |
9 | FÖRSTER Robert | 83 |
10 | GALIMZYANOV Denis | 75 |
11 | STAUFF Andreas | 82 |
12 | DUMOULIN Samuel | 57 |
13 | OFFREDO Yoann | 69 |
14 | RAMÍREZ Javier | 61 |
15 | WALKER Johnnie | 63 |
16 | MATA Enrique | 72 |
17 | HAEDO Juan José | 73 |
18 | WEYLANDT Wouter | 72 |