Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Sutton
1
67 kgReynés
2
69 kgKittel
3
82 kgFarrar
4
73 kgBreschel
5
70 kgBennati
6
71 kgGasparotto
7
65 kgRosendo
8
66 kgMondory
9
66 kgPaolini
10
66 kgDegenkolb
11
82 kgSagan
12
78 kgVan den Broeck
13
69 kgPetacchi
14
70 kgHouanard
15
70 kgHansen
16
72 kgMartens
17
69 kgVan Avermaet
18
74 kgMollema
19
64 kg
1
67 kgReynés
2
69 kgKittel
3
82 kgFarrar
4
73 kgBreschel
5
70 kgBennati
6
71 kgGasparotto
7
65 kgRosendo
8
66 kgMondory
9
66 kgPaolini
10
66 kgDegenkolb
11
82 kgSagan
12
78 kgVan den Broeck
13
69 kgPetacchi
14
70 kgHouanard
15
70 kgHansen
16
72 kgMartens
17
69 kgVan Avermaet
18
74 kgMollema
19
64 kg
Weight (KG) →
Result →
82
64
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | SUTTON Chris | 67 |
2 | REYNÉS Vicente | 69 |
3 | KITTEL Marcel | 82 |
4 | FARRAR Tyler | 73 |
5 | BRESCHEL Matti | 70 |
6 | BENNATI Daniele | 71 |
7 | GASPAROTTO Enrico | 65 |
8 | ROSENDO Jesús | 66 |
9 | MONDORY Lloyd | 66 |
10 | PAOLINI Luca | 66 |
11 | DEGENKOLB John | 82 |
12 | SAGAN Peter | 78 |
13 | VAN DEN BROECK Jurgen | 69 |
14 | PETACCHI Alessandro | 70 |
15 | HOUANARD Steve | 70 |
16 | HANSEN Adam | 72 |
17 | MARTENS Paul | 69 |
18 | VAN AVERMAET Greg | 74 |
19 | MOLLEMA Bauke | 64 |