Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Degenkolb
1
82 kgDavis
2
73 kgSwift
3
69 kgViviani
4
67 kgLodewyck
5
70 kgReynés
6
69 kgCimolai
7
70 kgIgnatiev
8
67 kgMeersman
9
63 kgCardoso
10
70 kgBennati
11
71 kgPérez
12
65 kgFernández
13
71 kgSteegmans
14
82 kgAramendia
15
72 kgvan Winden
16
70 kgChacón
17
70 kgContador
18
61 kgLobato
19
64 kg
1
82 kgDavis
2
73 kgSwift
3
69 kgViviani
4
67 kgLodewyck
5
70 kgReynés
6
69 kgCimolai
7
70 kgIgnatiev
8
67 kgMeersman
9
63 kgCardoso
10
70 kgBennati
11
71 kgPérez
12
65 kgFernández
13
71 kgSteegmans
14
82 kgAramendia
15
72 kgvan Winden
16
70 kgChacón
17
70 kgContador
18
61 kgLobato
19
64 kg
Weight (KG) →
Result →
82
61
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | DEGENKOLB John | 82 |
2 | DAVIS Allan | 73 |
3 | SWIFT Ben | 69 |
4 | VIVIANI Elia | 67 |
5 | LODEWYCK Klaas | 70 |
6 | REYNÉS Vicente | 69 |
7 | CIMOLAI Davide | 70 |
8 | IGNATIEV Mikhail | 67 |
9 | MEERSMAN Gianni | 63 |
10 | CARDOSO Manuel Antonio Leal | 70 |
11 | BENNATI Daniele | 71 |
12 | PÉREZ Rubén | 65 |
13 | FERNÁNDEZ Koldo | 71 |
14 | STEEGMANS Gert | 82 |
15 | ARAMENDIA Javier | 72 |
16 | VAN WINDEN Dennis | 70 |
17 | CHACÓN Javier | 70 |
18 | CONTADOR Alberto | 61 |
19 | LOBATO Juan José | 64 |