Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Roche
1
70 kgMoreno
2
59 kgPozzovivo
3
53 kgKönig
4
62 kgValverde
5
61 kgUlissi
6
63 kgRodríguez
7
58 kgBasso
8
70 kgMollema
9
64 kgRasmussen
10
88 kgHenderson
11
75 kgUrán
12
63 kgMartin
13
59 kgMajka
14
62 kgHorner
15
70 kgAramendia
16
72 kgPinot
17
63 kgZubeldia
18
68 kg
1
70 kgMoreno
2
59 kgPozzovivo
3
53 kgKönig
4
62 kgValverde
5
61 kgUlissi
6
63 kgRodríguez
7
58 kgBasso
8
70 kgMollema
9
64 kgRasmussen
10
88 kgHenderson
11
75 kgUrán
12
63 kgMartin
13
59 kgMajka
14
62 kgHorner
15
70 kgAramendia
16
72 kgPinot
17
63 kgZubeldia
18
68 kg
Weight (KG) →
Result →
88
53
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | ROCHE Nicolas | 70 |
2 | MORENO Daniel | 59 |
3 | POZZOVIVO Domenico | 53 |
4 | KÖNIG Leopold | 62 |
5 | VALVERDE Alejandro | 61 |
6 | ULISSI Diego | 63 |
7 | RODRÍGUEZ Joaquim | 58 |
8 | BASSO Ivan | 70 |
9 | MOLLEMA Bauke | 64 |
10 | RASMUSSEN Alex | 88 |
11 | HENDERSON Gregory | 75 |
12 | URÁN Rigoberto | 63 |
13 | MARTIN Dan | 59 |
14 | MAJKA Rafał | 62 |
15 | HORNER Chris | 70 |
16 | ARAMENDIA Javier | 72 |
17 | PINOT Thibaut | 63 |
18 | ZUBELDIA Haimar | 68 |