Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bouhanni
1
65 kgDegenkolb
2
82 kgFerrari
3
73 kgStuyven
4
78 kgLasca
5
65 kgGatto
6
67 kgHutarovich
7
71 kgBoonen
8
82 kgHofland
9
71 kgConti
10
61 kgPelucchi
11
74 kgJanse van Rensburg
12
63 kgCiolek
13
75 kgMatthews
14
72 kgMondory
15
66 kgHardy
16
62 kgMartinez
17
69 kgAramendia
18
72 kgSoupe
19
70 kg
1
65 kgDegenkolb
2
82 kgFerrari
3
73 kgStuyven
4
78 kgLasca
5
65 kgGatto
6
67 kgHutarovich
7
71 kgBoonen
8
82 kgHofland
9
71 kgConti
10
61 kgPelucchi
11
74 kgJanse van Rensburg
12
63 kgCiolek
13
75 kgMatthews
14
72 kgMondory
15
66 kgHardy
16
62 kgMartinez
17
69 kgAramendia
18
72 kgSoupe
19
70 kg
Weight (KG) →
Result →
82
61
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | BOUHANNI Nacer | 65 |
2 | DEGENKOLB John | 82 |
3 | FERRARI Roberto | 73 |
4 | STUYVEN Jasper | 78 |
5 | LASCA Francesco | 65 |
6 | GATTO Oscar | 67 |
7 | HUTAROVICH Yauheni | 71 |
8 | BOONEN Tom | 82 |
9 | HOFLAND Moreno | 71 |
10 | CONTI Valerio | 61 |
11 | PELUCCHI Matteo | 74 |
12 | JANSE VAN RENSBURG Jacques | 63 |
13 | CIOLEK Gerald | 75 |
14 | MATTHEWS Michael | 72 |
15 | MONDORY Lloyd | 66 |
16 | HARDY Romain | 62 |
17 | MARTINEZ Yannick | 69 |
18 | ARAMENDIA Javier | 72 |
19 | SOUPE Geoffrey | 70 |