Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Kron
1
63 kgGroves
2
76 kgVendrame
3
60 kgPiccolo
4
64 kgBagioli
5
60 kgRomo
6
70 kgBarceló
7
65 kgGarcía Cortina
8
77 kgSobrero
9
63 kgGrégoire
10
64 kgCoquard
11
59 kgVan Eetvelt
12
63 kgBallerstedt
13
76 kgvan den Berg
14
73 kgGoossens
15
64 kgBardet
16
65 kgCosta
17
69 kgRochas
18
51 kgZwiehoff
19
61 kg
1
63 kgGroves
2
76 kgVendrame
3
60 kgPiccolo
4
64 kgBagioli
5
60 kgRomo
6
70 kgBarceló
7
65 kgGarcía Cortina
8
77 kgSobrero
9
63 kgGrégoire
10
64 kgCoquard
11
59 kgVan Eetvelt
12
63 kgBallerstedt
13
76 kgvan den Berg
14
73 kgGoossens
15
64 kgBardet
16
65 kgCosta
17
69 kgRochas
18
51 kgZwiehoff
19
61 kg
Weight (KG) →
Result →
77
51
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | KRON Andreas | 63 |
2 | GROVES Kaden | 76 |
3 | VENDRAME Andrea | 60 |
4 | PICCOLO Andrea | 64 |
5 | BAGIOLI Andrea | 60 |
6 | ROMO Javier | 70 |
7 | BARCELÓ Fernando | 65 |
8 | GARCÍA CORTINA Iván | 77 |
9 | SOBRERO Matteo | 63 |
10 | GRÉGOIRE Romain | 64 |
11 | COQUARD Bryan | 59 |
12 | VAN EETVELT Lennert | 63 |
13 | BALLERSTEDT Maurice | 76 |
14 | VAN DEN BERG Marijn | 73 |
15 | GOOSSENS Kobe | 64 |
16 | BARDET Romain | 65 |
17 | COSTA Rui | 69 |
18 | ROCHAS Rémy | 51 |
19 | ZWIEHOFF Ben | 61 |