Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Philipsen
1
75 kgVernon
2
74 kgReinderink
3
67 kgAular
4
65 kgViviani
5
67 kgVinokurov
6
65 kgGarcía Cortina
7
77 kgBouwman
8
60 kgGonzález
9
68 kgde la Calle
10
65 kgCoquard
11
59 kgSilva
12
64 kgNicolau
13
66 kgPidcock
14
58 kgMihkels
15
75 kgvan Dijke
16
74 kgTurner
17
74 kgPlanckaert
18
71 kgPedersen
19
76 kgCavia
20
62 kg
1
75 kgVernon
2
74 kgReinderink
3
67 kgAular
4
65 kgViviani
5
67 kgVinokurov
6
65 kgGarcía Cortina
7
77 kgBouwman
8
60 kgGonzález
9
68 kgde la Calle
10
65 kgCoquard
11
59 kgSilva
12
64 kgNicolau
13
66 kgPidcock
14
58 kgMihkels
15
75 kgvan Dijke
16
74 kgTurner
17
74 kgPlanckaert
18
71 kgPedersen
19
76 kgCavia
20
62 kg
Weight (KG) →
Result →
77
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | PHILIPSEN Jasper | 75 |
2 | VERNON Ethan | 74 |
3 | REINDERINK Pepijn | 67 |
4 | AULAR Orluis | 65 |
5 | VIVIANI Elia | 67 |
6 | VINOKUROV Nicolas | 65 |
7 | GARCÍA CORTINA Iván | 77 |
8 | BOUWMAN Koen | 60 |
9 | GONZÁLEZ David | 68 |
10 | DE LA CALLE Hugo | 65 |
11 | COQUARD Bryan | 59 |
12 | SILVA Guillermo Thomas | 64 |
13 | NICOLAU Joel | 66 |
14 | PIDCOCK Thomas | 58 |
15 | MIHKELS Madis | 75 |
16 | VAN DIJKE Tim | 74 |
17 | TURNER Ben | 74 |
18 | PLANCKAERT Edward | 71 |
19 | PEDERSEN Mads | 76 |
20 | CAVIA Daniel | 62 |