Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 48
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Aular
1
65 kgBusato
2
67 kgZamparella
4
67 kgMonsalve
5
62 kgRodríguez
7
58 kgLunardon
9
77 kgBani
12
72 kgGimenez
14
53 kgGodoy
40
64 kgMartins
44
70 kgDraperi
49
70 kgLinarez
59
74 kgChacón
74
63 kgGil Martinez
96
60 kgSánchez
109
72 kgCelano
114
65 kgUbeto
118
60 kgConti
122
68 kg
1
65 kgBusato
2
67 kgZamparella
4
67 kgMonsalve
5
62 kgRodríguez
7
58 kgLunardon
9
77 kgBani
12
72 kgGimenez
14
53 kgGodoy
40
64 kgMartins
44
70 kgDraperi
49
70 kgLinarez
59
74 kgChacón
74
63 kgGil Martinez
96
60 kgSánchez
109
72 kgCelano
114
65 kgUbeto
118
60 kgConti
122
68 kg
Weight (KG) →
Result →
77
53
1
122
# | Rider | Weight (KG) |
---|---|---|
1 | AULAR Orluis | 65 |
2 | BUSATO Matteo | 67 |
4 | ZAMPARELLA Marco | 67 |
5 | MONSALVE Yonathan | 62 |
7 | RODRÍGUEZ Jackson | 58 |
9 | LUNARDON Paolo | 77 |
12 | BANI Eugenio | 72 |
14 | GIMENEZ Carlos | 53 |
40 | GODOY Yonder | 64 |
44 | MARTINS Uri | 70 |
49 | DRAPERI Matteo | 70 |
59 | LINAREZ Leangel Rubén | 74 |
74 | CHACÓN José Isidro | 63 |
96 | GIL MARTINEZ Tomas Aurelio | 60 |
109 | SÁNCHEZ Augusto | 72 |
114 | CELANO Danilo | 65 |
118 | UBETO Miguel Armando | 60 |
122 | CONTI Samuele | 68 |