Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Sevilla
1
62 kgVargas
2
69 kgGálviz
3
65 kgRestrepo
4
73 kgMuñoz
5
57 kgPellaud
9
70 kgLópez
14
55 kgUmba
15
58 kgDuarte
17
55 kgChacón
21
63 kgJurado
25
68 kgSuaza
29
66 kgCañaveral
43
60 kgGuamá
44
61 kgLonardi
53
70 kgRivera
54
56 kgDalla Valle
57
73 kgTagliani
66
70 kgMalucelli
67
68 kgViloria
84
64 kgRevete
105
62 kg
1
62 kgVargas
2
69 kgGálviz
3
65 kgRestrepo
4
73 kgMuñoz
5
57 kgPellaud
9
70 kgLópez
14
55 kgUmba
15
58 kgDuarte
17
55 kgChacón
21
63 kgJurado
25
68 kgSuaza
29
66 kgCañaveral
43
60 kgGuamá
44
61 kgLonardi
53
70 kgRivera
54
56 kgDalla Valle
57
73 kgTagliani
66
70 kgMalucelli
67
68 kgViloria
84
64 kgRevete
105
62 kg
Weight (KG) →
Result →
73
55
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | SEVILLA Óscar | 62 |
2 | VARGAS Walter | 69 |
3 | GÁLVIZ Carlos Johan | 65 |
4 | RESTREPO Jhonatan | 73 |
5 | MUÑOZ Daniel | 57 |
9 | PELLAUD Simon | 70 |
14 | LÓPEZ Harold Martín | 55 |
15 | UMBA Santiago | 58 |
17 | DUARTE Fabio | 55 |
21 | CHACÓN José Isidro | 63 |
25 | JURADO Christofer Robín | 68 |
29 | SUAZA Bernardo | 66 |
43 | CAÑAVERAL Johnatan | 60 |
44 | GUAMÁ Byron | 61 |
53 | LONARDI Giovanni | 70 |
54 | RIVERA Kevin | 56 |
57 | DALLA VALLE Nicolas | 73 |
66 | TAGLIANI Filippo | 70 |
67 | MALUCELLI Matteo | 68 |
84 | VILORIA Enmanuel David | 64 |
105 | REVETE Brayan | 62 |