Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 52
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Induráin
2
76 kgMurguialday
3
58 kgWinnen
6
60 kgPrado
7
69 kgBreukink
9
70 kgCordes
10
70 kgMujika
15
73 kgBölts
17
73 kgEkimov
18
69 kgElliott
28
76 kgWeltz
29
65 kgDomínguez
30
67 kgde Vries
32
75 kgNijdam
34
70 kgden Bakker
51
71 kgSergeant
58
76 kgCaroli
66
77 kgArntz
68
70 kgNavarro
72
77 kgEscartín
76
61 kgPlanckaert
77
69 kgOvando
80
66 kgWampers
83
82 kg
2
76 kgMurguialday
3
58 kgWinnen
6
60 kgPrado
7
69 kgBreukink
9
70 kgCordes
10
70 kgMujika
15
73 kgBölts
17
73 kgEkimov
18
69 kgElliott
28
76 kgWeltz
29
65 kgDomínguez
30
67 kgde Vries
32
75 kgNijdam
34
70 kgden Bakker
51
71 kgSergeant
58
76 kgCaroli
66
77 kgArntz
68
70 kgNavarro
72
77 kgEscartín
76
61 kgPlanckaert
77
69 kgOvando
80
66 kgWampers
83
82 kg
Weight (KG) →
Result →
82
58
2
83
# | Rider | Weight (KG) |
---|---|---|
2 | INDURÁIN Miguel | 76 |
3 | MURGUIALDAY Javier | 58 |
6 | WINNEN Peter | 60 |
7 | PRADO Vicente | 69 |
9 | BREUKINK Erik | 70 |
10 | CORDES Tom | 70 |
15 | MUJIKA Jokin | 73 |
17 | BÖLTS Udo | 73 |
18 | EKIMOV Viatcheslav | 69 |
28 | ELLIOTT Malcolm | 76 |
29 | WELTZ Johnny | 65 |
30 | DOMÍNGUEZ Manuel Jorge | 67 |
32 | DE VRIES Gerrit | 75 |
34 | NIJDAM Jelle | 70 |
51 | DEN BAKKER Maarten | 71 |
58 | SERGEANT Marc | 76 |
66 | CAROLI Daniele | 77 |
68 | ARNTZ Marcel | 70 |
72 | NAVARRO Francisco | 77 |
76 | ESCARTÍN Fernando | 61 |
77 | PLANCKAERT Eddy | 69 |
80 | OVANDO Rolando | 66 |
83 | WAMPERS Jean-Marie | 82 |