Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 46
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Olano
1
70 kgEscartín
2
61 kgRominger
4
65 kgHamburger
7
58 kgDiaz
8
55 kgSmetanine
9
69 kgAndersson
10
71 kgJulich
13
68 kgPérez Rodríguez
14
67 kgMillar
15
79 kgMøller
16
70 kgJiménez
19
70 kgVoskamp
21
75 kgGontchenkov
23
74 kgIvanov
24
73 kgCasero
26
72 kgTauler
30
74 kg
1
70 kgEscartín
2
61 kgRominger
4
65 kgHamburger
7
58 kgDiaz
8
55 kgSmetanine
9
69 kgAndersson
10
71 kgJulich
13
68 kgPérez Rodríguez
14
67 kgMillar
15
79 kgMøller
16
70 kgJiménez
19
70 kgVoskamp
21
75 kgGontchenkov
23
74 kgIvanov
24
73 kgCasero
26
72 kgTauler
30
74 kg
Weight (KG) →
Result →
79
55
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | OLANO Abraham | 70 |
2 | ESCARTÍN Fernando | 61 |
4 | ROMINGER Tony | 65 |
7 | HAMBURGER Bo | 58 |
8 | DIAZ Rafael | 55 |
9 | SMETANINE Serguei | 69 |
10 | ANDERSSON Michael | 71 |
13 | JULICH Bobby | 68 |
14 | PÉREZ RODRÍGUEZ Luis | 67 |
15 | MILLAR David | 79 |
16 | MØLLER Claus Michael | 70 |
19 | JIMÉNEZ José María | 70 |
21 | VOSKAMP Bart | 75 |
23 | GONTCHENKOV Alexander | 74 |
24 | IVANOV Sergei | 73 |
26 | CASERO Ángel Luis | 72 |
30 | TAULER Toni | 74 |