Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Torrent
1
71 kgEdo
2
64 kgFagnini
3
70 kgValdés
5
60 kgMaestre
6
74 kgMoos
7
64 kgBénéteau
8
67 kgArrieta
9
68 kgFerrío
10
51 kgOdriozola
11
70 kgSánchez
12
65 kgGutiérrez
13
78 kgJeker
14
72 kgde Sárraga
15
69 kgRutkiewicz
16
66 kgPugaci
17
67 kgRodríguez
19
58 kgOsa
20
64 kgSerov
21
77 kgRast
24
80 kgPasamontes
26
72 kgReynés
28
69 kgBessy
29
65 kgCharteau
31
67 kg
1
71 kgEdo
2
64 kgFagnini
3
70 kgValdés
5
60 kgMaestre
6
74 kgMoos
7
64 kgBénéteau
8
67 kgArrieta
9
68 kgFerrío
10
51 kgOdriozola
11
70 kgSánchez
12
65 kgGutiérrez
13
78 kgJeker
14
72 kgde Sárraga
15
69 kgRutkiewicz
16
66 kgPugaci
17
67 kgRodríguez
19
58 kgOsa
20
64 kgSerov
21
77 kgRast
24
80 kgPasamontes
26
72 kgReynés
28
69 kgBessy
29
65 kgCharteau
31
67 kg
Weight (KG) →
Result →
80
51
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | TORRENT Carlos | 71 |
2 | EDO Ángel | 64 |
3 | FAGNINI Gian Matteo | 70 |
5 | VALDÉS Ricardo | 60 |
6 | MAESTRE José Manuel | 74 |
7 | MOOS Alexandre | 64 |
8 | BÉNÉTEAU Walter | 67 |
9 | ARRIETA José Luis | 68 |
10 | FERRÍO Jorge | 51 |
11 | ODRIOZOLA Jon | 70 |
12 | SÁNCHEZ Samuel | 65 |
13 | GUTIÉRREZ José Enrique | 78 |
14 | JEKER Fabian | 72 |
15 | DE SÁRRAGA Mario | 69 |
16 | RUTKIEWICZ Marek | 66 |
17 | PUGACI Igor | 67 |
19 | RODRÍGUEZ Joaquim | 58 |
20 | OSA Aitor | 64 |
21 | SEROV Alexander | 77 |
24 | RAST Grégory | 80 |
26 | PASAMONTES Luis | 72 |
28 | REYNÉS Vicente | 69 |
29 | BESSY Frédéric | 65 |
31 | CHARTEAU Anthony | 67 |