Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Sánchez
1
65 kgAstarloa
2
61 kgPasamontes
3
72 kgZabel
4
69 kgTondo
5
68 kgGalparsoro
6
67 kgAranaga
7
60 kgPires
16
63 kgCárdenas
17
59 kgCheula
18
62 kgPérez
19
76 kgJufré
24
65 kgDueñas
25
61 kgHernández
26
64 kgYakovlev
30
70 kgTorrent
33
71 kgWynants
34
74 kgDi Grande
36
58 kgPérez
37
70 kgMoreno
38
59 kgFerrío
39
51 kgDuma
40
64 kgBonilla
41
73 kg
1
65 kgAstarloa
2
61 kgPasamontes
3
72 kgZabel
4
69 kgTondo
5
68 kgGalparsoro
6
67 kgAranaga
7
60 kgPires
16
63 kgCárdenas
17
59 kgCheula
18
62 kgPérez
19
76 kgJufré
24
65 kgDueñas
25
61 kgHernández
26
64 kgYakovlev
30
70 kgTorrent
33
71 kgWynants
34
74 kgDi Grande
36
58 kgPérez
37
70 kgMoreno
38
59 kgFerrío
39
51 kgDuma
40
64 kgBonilla
41
73 kg
Weight (KG) →
Result →
76
51
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | SÁNCHEZ Samuel | 65 |
2 | ASTARLOA Igor | 61 |
3 | PASAMONTES Luis | 72 |
4 | ZABEL Erik | 69 |
5 | TONDO Xavier | 68 |
6 | GALPARSORO Dionisio | 67 |
7 | ARANAGA Andoni | 60 |
16 | PIRES Bruno | 63 |
17 | CÁRDENAS Félix Rafael | 59 |
18 | CHEULA Giampaolo | 62 |
19 | PÉREZ Francisco | 76 |
24 | JUFRÉ Josep | 65 |
25 | DUEÑAS Moisés | 61 |
26 | HERNÁNDEZ Aitor | 64 |
30 | YAKOVLEV Serguei | 70 |
33 | TORRENT Carlos | 71 |
34 | WYNANTS Maarten | 74 |
36 | DI GRANDE Giuseppe | 58 |
37 | PÉREZ Aitor | 70 |
38 | MORENO Daniel | 59 |
39 | FERRÍO Jorge | 51 |
40 | DUMA Vladimir | 64 |
41 | BONILLA José Adrián | 73 |