Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Caicedo
1
62 kgCarapaz
2
62 kgMestre
3
58 kgEarle
4
70 kgStrakhov
5
70 kgFernández
6
60 kgEvtushenko
7
72 kgPrades
8
56 kgPrades
9
63 kgFonte
10
60 kgPardilla
11
65 kgChalapud
12
63 kgHiguita
13
57 kgSilva
14
66 kgPedrero
15
60 kgVinhas
16
59 kgBizkarra
17
53 kgGonçalves
18
70 kgGarcía
20
55 kg
1
62 kgCarapaz
2
62 kgMestre
3
58 kgEarle
4
70 kgStrakhov
5
70 kgFernández
6
60 kgEvtushenko
7
72 kgPrades
8
56 kgPrades
9
63 kgFonte
10
60 kgPardilla
11
65 kgChalapud
12
63 kgHiguita
13
57 kgSilva
14
66 kgPedrero
15
60 kgVinhas
16
59 kgBizkarra
17
53 kgGonçalves
18
70 kgGarcía
20
55 kg
Weight (KG) →
Result →
72
53
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | CAICEDO Jonathan Klever | 62 |
2 | CARAPAZ Richard | 62 |
3 | MESTRE Ricardo | 58 |
4 | EARLE Nathan | 70 |
5 | STRAKHOV Dmitry | 70 |
6 | FERNÁNDEZ Rubén | 60 |
7 | EVTUSHENKO Alexander | 72 |
8 | PRADES Benjamín | 56 |
9 | PRADES Eduard | 63 |
10 | FONTE César | 60 |
11 | PARDILLA Sergio | 65 |
12 | CHALAPUD Robinson | 63 |
13 | HIGUITA Sergio | 57 |
14 | SILVA Joaquim | 66 |
15 | PEDRERO Antonio | 60 |
16 | VINHAS Rui | 59 |
17 | BIZKARRA Mikel | 53 |
18 | GONÇALVES Domingos | 70 |
20 | GARCÍA Jhojan | 55 |