Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Carapaz
1
62 kgNeilands
2
69 kgQuintero
3
63 kgLanda
4
61 kgVlasov
5
68 kgGarcía de Mateos
6
68 kgAular
7
65 kgPinto
8
58 kgRojas
9
70 kgLastra
10
64 kgNych
11
74 kgCañaveral
12
60 kgRodrigues
13
60 kgBizkarra
14
53 kgRodríguez
15
59 kgFernandes
16
63 kgGarcía
17
55 kgGonzález
18
65 kg
1
62 kgNeilands
2
69 kgQuintero
3
63 kgLanda
4
61 kgVlasov
5
68 kgGarcía de Mateos
6
68 kgAular
7
65 kgPinto
8
58 kgRojas
9
70 kgLastra
10
64 kgNych
11
74 kgCañaveral
12
60 kgRodrigues
13
60 kgBizkarra
14
53 kgRodríguez
15
59 kgFernandes
16
63 kgGarcía
17
55 kgGonzález
18
65 kg
Weight (KG) →
Result →
74
53
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | CARAPAZ Richard | 62 |
2 | NEILANDS Krists | 69 |
3 | QUINTERO Carlos | 63 |
4 | LANDA Mikel | 61 |
5 | VLASOV Aleksandr | 68 |
6 | GARCÍA DE MATEOS Vicente | 68 |
7 | AULAR Orluis | 65 |
8 | PINTO Edgar | 58 |
9 | ROJAS José Joaquín | 70 |
10 | LASTRA Jonathan | 64 |
11 | NYCH Artem | 74 |
12 | CAÑAVERAL Johnatan | 60 |
13 | RODRIGUES David Miguel Costa | 60 |
14 | BIZKARRA Mikel | 53 |
15 | RODRÍGUEZ Cristián | 59 |
16 | FERNANDES Luís | 63 |
17 | GARCÍA Jhojan | 55 |
18 | GONZÁLEZ Mario | 65 |