Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 57
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Cordes
1
70 kgWinnen
4
60 kgPedersen
8
70 kgSchepers
10
60 kgde Vries
14
75 kgBourguignon
16
72 kgMujika
18
73 kgden Bakker
24
71 kgRipoll
30
66 kgMadiot
33
68 kgLlach
34
58 kgStephens
38
65 kgGarmendia
49
68 kgNijdam
58
70 kgBramati
63
72 kgPrado
74
69 kgBortolami
76
73 kgCabello
87
72 kgVeenstra
102
70 kgOvando
114
66 kgVilamajo
115
70 kg
1
70 kgWinnen
4
60 kgPedersen
8
70 kgSchepers
10
60 kgde Vries
14
75 kgBourguignon
16
72 kgMujika
18
73 kgden Bakker
24
71 kgRipoll
30
66 kgMadiot
33
68 kgLlach
34
58 kgStephens
38
65 kgGarmendia
49
68 kgNijdam
58
70 kgBramati
63
72 kgPrado
74
69 kgBortolami
76
73 kgCabello
87
72 kgVeenstra
102
70 kgOvando
114
66 kgVilamajo
115
70 kg
Weight (KG) →
Result →
75
58
1
115
# | Rider | Weight (KG) |
---|---|---|
1 | CORDES Tom | 70 |
4 | WINNEN Peter | 60 |
8 | PEDERSEN Atle | 70 |
10 | SCHEPERS Eddy | 60 |
14 | DE VRIES Gerrit | 75 |
16 | BOURGUIGNON Thierry | 72 |
18 | MUJIKA Jokin | 73 |
24 | DEN BAKKER Maarten | 71 |
30 | RIPOLL José Andrés | 66 |
33 | MADIOT Marc | 68 |
34 | LLACH Joaquin | 58 |
38 | STEPHENS Neil | 65 |
49 | GARMENDIA Aitor | 68 |
58 | NIJDAM Jelle | 70 |
63 | BRAMATI Davide | 72 |
74 | PRADO Vicente | 69 |
76 | BORTOLAMI Gianluca | 73 |
87 | CABELLO Francisco | 72 |
102 | VEENSTRA Wiebren | 70 |
114 | OVANDO Rolando | 66 |
115 | VILAMAJO Jaime | 70 |