Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Belda
1
53 kgSilva
5
59 kgKeizer
7
72 kgde la Cruz
9
66 kgAdams
10
63 kgDomagalski
11
77 kgde la Parte
12
64 kgFerrari
14
64 kgIriarte
19
68 kgvan Winden
22
70 kgBravo
25
61 kgAl
29
72 kgGutiérrez
47
60 kgSchep
48
80 kgStam
49
64 kgRuíz
55
66 kgvan Poppel
57
78 kgBol
60
71 kgSáez
65
70 kgVan Staeyen
75
62 kgCarvalho
76
62 kg
1
53 kgSilva
5
59 kgKeizer
7
72 kgde la Cruz
9
66 kgAdams
10
63 kgDomagalski
11
77 kgde la Parte
12
64 kgFerrari
14
64 kgIriarte
19
68 kgvan Winden
22
70 kgBravo
25
61 kgAl
29
72 kgGutiérrez
47
60 kgSchep
48
80 kgStam
49
64 kgRuíz
55
66 kgvan Poppel
57
78 kgBol
60
71 kgSáez
65
70 kgVan Staeyen
75
62 kgCarvalho
76
62 kg
Weight (KG) →
Result →
80
53
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | BELDA David | 53 |
5 | SILVA Bruno | 59 |
7 | KEIZER Martijn | 72 |
9 | DE LA CRUZ David | 66 |
10 | ADAMS Joeri | 63 |
11 | DOMAGALSKI Karol | 77 |
12 | DE LA PARTE Víctor | 64 |
14 | FERRARI Fabricio | 64 |
19 | IRIARTE Francisco Javier | 68 |
22 | VAN WINDEN Dennis | 70 |
25 | BRAVO Garikoitz | 61 |
29 | AL Thijs | 72 |
47 | GUTIÉRREZ David | 60 |
48 | SCHEP Peter | 80 |
49 | STAM Danny | 64 |
55 | RUÍZ Eloy | 66 |
57 | VAN POPPEL Boy | 78 |
60 | BOL Jetse | 71 |
65 | SÁEZ Adrián | 70 |
75 | VAN STAEYEN Michael | 62 |
76 | CARVALHO Antonio | 62 |