Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 55
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Brutt
1
70 kgLosada
4
69 kgJacobs
8
68 kgOroz
9
71 kgSchwab
12
65 kgVelasco
15
65 kgMegías
18
63 kgVelits
20
63 kgKlimov
27
69 kgSerov
28
77 kgVandenbergh
34
86 kgAperribay
38
67 kgNieve
41
62 kgZonneveld
43
63 kgde Baat
46
66 kgVelits
49
70 kgTrusov
58
77 kgIgnatiev
59
67 kgBlain
67
82 kgWalgien
76
78 kg
1
70 kgLosada
4
69 kgJacobs
8
68 kgOroz
9
71 kgSchwab
12
65 kgVelasco
15
65 kgMegías
18
63 kgVelits
20
63 kgKlimov
27
69 kgSerov
28
77 kgVandenbergh
34
86 kgAperribay
38
67 kgNieve
41
62 kgZonneveld
43
63 kgde Baat
46
66 kgVelits
49
70 kgTrusov
58
77 kgIgnatiev
59
67 kgBlain
67
82 kgWalgien
76
78 kg
Weight (KG) →
Result →
86
62
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | BRUTT Pavel | 70 |
4 | LOSADA Alberto | 69 |
8 | JACOBS Pieter | 68 |
9 | OROZ Juan José | 71 |
12 | SCHWAB Hubert | 65 |
15 | VELASCO Iván | 65 |
18 | MEGÍAS Javier | 63 |
20 | VELITS Peter | 63 |
27 | KLIMOV Sergey | 69 |
28 | SEROV Alexander | 77 |
34 | VANDENBERGH Stijn | 86 |
38 | APERRIBAY Lander | 67 |
41 | NIEVE Mikel | 62 |
43 | ZONNEVELD Thijs | 63 |
46 | DE BAAT Arjen | 66 |
49 | VELITS Martin | 70 |
58 | TRUSOV Nikolay | 77 |
59 | IGNATIEV Mikhail | 67 |
67 | BLAIN Alexandre | 82 |
76 | WALGIEN Jorrit | 78 |