Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Brutt
2
70 kgCannone
3
75 kgJacobs
4
68 kgClarke
7
63 kgPardilla
9
65 kgHuguet
10
66 kgHerrada
11
65 kgKlimov
16
69 kgSerov
18
77 kgEl Fares
19
62 kgKreder
27
67 kgClarke
32
68 kgMartínez
34
74 kgIgnatiev
35
67 kgGoss
47
70 kgNieve
48
62 kgSesma
53
70 kgFernández
59
69 kgSulzberger
69
65 kgBlain
73
82 kgFerrari
85
64 kg
2
70 kgCannone
3
75 kgJacobs
4
68 kgClarke
7
63 kgPardilla
9
65 kgHuguet
10
66 kgHerrada
11
65 kgKlimov
16
69 kgSerov
18
77 kgEl Fares
19
62 kgKreder
27
67 kgClarke
32
68 kgMartínez
34
74 kgIgnatiev
35
67 kgGoss
47
70 kgNieve
48
62 kgSesma
53
70 kgFernández
59
69 kgSulzberger
69
65 kgBlain
73
82 kgFerrari
85
64 kg
Weight (KG) →
Result →
82
62
2
85
# | Rider | Weight (KG) |
---|---|---|
2 | BRUTT Pavel | 70 |
3 | CANNONE Donato | 75 |
4 | JACOBS Pieter | 68 |
7 | CLARKE Simon | 63 |
9 | PARDILLA Sergio | 65 |
10 | HUGUET Yann | 66 |
11 | HERRADA José | 65 |
16 | KLIMOV Sergey | 69 |
18 | SEROV Alexander | 77 |
19 | EL FARES Julien | 62 |
27 | KREDER Michel | 67 |
32 | CLARKE Jonathan | 68 |
34 | MARTÍNEZ Serafín | 74 |
35 | IGNATIEV Mikhail | 67 |
47 | GOSS Matthew | 70 |
48 | NIEVE Mikel | 62 |
53 | SESMA Daniel | 70 |
59 | FERNÁNDEZ Delio | 69 |
69 | SULZBERGER Wesley | 65 |
73 | BLAIN Alexandre | 82 |
85 | FERRARI Fabricio | 64 |