Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 34
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Mollema
4
64 kgAgirre
5
68 kgSesma
6
70 kgNieve
9
62 kgKvachuk
11
68 kgBates
13
61 kgKreder
14
67 kgHerrada
15
65 kgKeizer
16
72 kgAmador
17
73 kgAernouts
18
60 kgLeezer
20
76 kgSulzberger
30
65 kgToribio
33
64 kgClarke
36
63 kgVeelers
43
75 kgPardilla
46
65 kgShpilevsky
47
78 kgWalker
55
63 kgDe Gendt
83
73 kgPeeters
90
67 kg
4
64 kgAgirre
5
68 kgSesma
6
70 kgNieve
9
62 kgKvachuk
11
68 kgBates
13
61 kgKreder
14
67 kgHerrada
15
65 kgKeizer
16
72 kgAmador
17
73 kgAernouts
18
60 kgLeezer
20
76 kgSulzberger
30
65 kgToribio
33
64 kgClarke
36
63 kgVeelers
43
75 kgPardilla
46
65 kgShpilevsky
47
78 kgWalker
55
63 kgDe Gendt
83
73 kgPeeters
90
67 kg
Weight (KG) →
Result →
78
60
4
90
# | Rider | Weight (KG) |
---|---|---|
4 | MOLLEMA Bauke | 64 |
5 | AGIRRE Josu | 68 |
6 | SESMA Daniel | 70 |
9 | NIEVE Mikel | 62 |
11 | KVACHUK Oleksandr | 68 |
13 | BATES Gene | 61 |
14 | KREDER Michel | 67 |
15 | HERRADA José | 65 |
16 | KEIZER Martijn | 72 |
17 | AMADOR Andrey | 73 |
18 | AERNOUTS Bart | 60 |
20 | LEEZER Tom | 76 |
30 | SULZBERGER Wesley | 65 |
33 | TORIBIO José Vicente | 64 |
36 | CLARKE Simon | 63 |
43 | VEELERS Tom | 75 |
46 | PARDILLA Sergio | 65 |
47 | SHPILEVSKY Boris | 78 |
55 | WALKER Johnnie | 63 |
83 | DE GENDT Thomas | 73 |
90 | PEETERS Kevin | 67 |