Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 106
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Dmitriyev
3
69 kgToribio
4
64 kgDe Gendt
5
73 kgSesma
6
70 kgAmador
8
73 kgVantornout
13
69 kgRaimbekov
18
66 kgVanthourenhout
23
65 kgRenev
25
68 kgKvachuk
26
68 kgMata
32
72 kgSuarez
37
67 kgIglinskiy
42
68 kgde Baat
43
66 kgTleubayev
45
70 kgBoeckmans
46
76 kgDyachenko
51
65 kgIriarte
59
68 kgHerrada
65
70 kgKreder
66
70 kgUribarri
70
62 kg
3
69 kgToribio
4
64 kgDe Gendt
5
73 kgSesma
6
70 kgAmador
8
73 kgVantornout
13
69 kgRaimbekov
18
66 kgVanthourenhout
23
65 kgRenev
25
68 kgKvachuk
26
68 kgMata
32
72 kgSuarez
37
67 kgIglinskiy
42
68 kgde Baat
43
66 kgTleubayev
45
70 kgBoeckmans
46
76 kgDyachenko
51
65 kgIriarte
59
68 kgHerrada
65
70 kgKreder
66
70 kgUribarri
70
62 kg
Weight (KG) →
Result →
76
62
3
70
# | Rider | Weight (KG) |
---|---|---|
3 | DMITRIYEV Valeriy | 69 |
4 | TORIBIO José Vicente | 64 |
5 | DE GENDT Thomas | 73 |
6 | SESMA Daniel | 70 |
8 | AMADOR Andrey | 73 |
13 | VANTORNOUT Klaas | 69 |
18 | RAIMBEKOV Bolat | 66 |
23 | VANTHOURENHOUT Sven | 65 |
25 | RENEV Sergey | 68 |
26 | KVACHUK Oleksandr | 68 |
32 | MATA Enrique | 72 |
37 | SUAREZ Camilo Andres | 67 |
42 | IGLINSKIY Valentin | 68 |
43 | DE BAAT Arjen | 66 |
45 | TLEUBAYEV Ruslan | 70 |
46 | BOECKMANS Kris | 76 |
51 | DYACHENKO Alexandr | 65 |
59 | IRIARTE Francisco Javier | 68 |
65 | HERRADA Jesús | 70 |
66 | KREDER Raymond | 70 |
70 | URIBARRI Unai | 62 |