Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Vos
1
58 kgGerritse
2
59 kgVollering
3
57 kgvan der Breggen
4
56 kgKerbaol
5
57 kgPaternoster
6
53 kgReusser
7
70 kgHenderson
10
58 kgLippert
14
56 kgTeutenberg
16
53 kgRooijakkers
17
58 kgMarkus
20
61 kgLabous
22
54 kgGuazzini
24
65 kgFerguson
29
55 kgSkalniak-Sójka
31
54 kgKastelijn
33
52 kgAalerud
34
54 kgDideriksen
35
62 kgFaulkner
42
62 kg
1
58 kgGerritse
2
59 kgVollering
3
57 kgvan der Breggen
4
56 kgKerbaol
5
57 kgPaternoster
6
53 kgReusser
7
70 kgHenderson
10
58 kgLippert
14
56 kgTeutenberg
16
53 kgRooijakkers
17
58 kgMarkus
20
61 kgLabous
22
54 kgGuazzini
24
65 kgFerguson
29
55 kgSkalniak-Sójka
31
54 kgKastelijn
33
52 kgAalerud
34
54 kgDideriksen
35
62 kgFaulkner
42
62 kg
Weight (KG) →
Result →
70
52
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
2 | GERRITSE Femke | 59 |
3 | VOLLERING Demi | 57 |
4 | VAN DER BREGGEN Anna | 56 |
5 | KERBAOL Cédrine | 57 |
6 | PATERNOSTER Letizia | 53 |
7 | REUSSER Marlen | 70 |
10 | HENDERSON Anna | 58 |
14 | LIPPERT Liane | 56 |
16 | TEUTENBERG Lea Lin | 53 |
17 | ROOIJAKKERS Pauliena | 58 |
20 | MARKUS Riejanne | 61 |
22 | LABOUS Juliette | 54 |
24 | GUAZZINI Vittoria | 65 |
29 | FERGUSON Cat | 55 |
31 | SKALNIAK-SÓJKA Agnieszka | 54 |
33 | KASTELIJN Yara | 52 |
34 | AALERUD Katrine | 54 |
35 | DIDERIKSEN Amalie | 62 |
42 | FAULKNER Kristen | 62 |