Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 71
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Duarte
1
55 kgSevilla
9
62 kgBotero
10
75 kgLaverde
12
63 kgGálviz
15
65 kgParra
17
62 kgGonzález
25
55 kgPeña
31
65 kgBeltrán
39
59 kgChalapud
46
63 kgRubiano
47
58 kgWilches
50
56 kgCárdenas
59
59 kgZapata
77
62 kgMancebo
81
64 kgPedraza
83
58 kgGil Martinez
95
60 kgChadwick
108
75 kgGutiérrez
117
78 kg
1
55 kgSevilla
9
62 kgBotero
10
75 kgLaverde
12
63 kgGálviz
15
65 kgParra
17
62 kgGonzález
25
55 kgPeña
31
65 kgBeltrán
39
59 kgChalapud
46
63 kgRubiano
47
58 kgWilches
50
56 kgCárdenas
59
59 kgZapata
77
62 kgMancebo
81
64 kgPedraza
83
58 kgGil Martinez
95
60 kgChadwick
108
75 kgGutiérrez
117
78 kg
Weight (KG) →
Result →
78
55
1
117
# | Rider | Weight (KG) |
---|---|---|
1 | DUARTE Fabio | 55 |
9 | SEVILLA Óscar | 62 |
10 | BOTERO Santiago | 75 |
12 | LAVERDE Luis Felipe | 63 |
15 | GÁLVIZ Carlos Johan | 65 |
17 | PARRA Iván Ramiro | 62 |
25 | GONZÁLEZ Freddy Excelino | 55 |
31 | PEÑA Victor Hugo | 65 |
39 | BELTRÁN Edward | 59 |
46 | CHALAPUD Robinson | 63 |
47 | RUBIANO Miguel Angel | 58 |
50 | WILCHES Juan Pablo | 56 |
59 | CÁRDENAS Félix Rafael | 59 |
77 | ZAPATA Javier de Jesús | 62 |
81 | MANCEBO Francisco | 64 |
83 | PEDRAZA Wálter Fernando | 58 |
95 | GIL MARTINEZ Tomas Aurelio | 60 |
108 | CHADWICK Glen Alan | 75 |
117 | GUTIÉRREZ José Enrique | 78 |