Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Gutiérrez
18
78 kgRubiano
21
58 kgLaverde
23
63 kgDuarte
25
55 kgSevilla
26
62 kgPeña
29
65 kgBotero
43
75 kgGonzález
52
55 kgParra
60
62 kgGil Martinez
67
60 kgBeltrán
70
59 kgWilches
85
56 kgGálviz
88
65 kgZapata
93
62 kgMancebo
108
64 kgChadwick
117
75 kgPedraza
118
58 kgChalapud
137
63 kg
18
78 kgRubiano
21
58 kgLaverde
23
63 kgDuarte
25
55 kgSevilla
26
62 kgPeña
29
65 kgBotero
43
75 kgGonzález
52
55 kgParra
60
62 kgGil Martinez
67
60 kgBeltrán
70
59 kgWilches
85
56 kgGálviz
88
65 kgZapata
93
62 kgMancebo
108
64 kgChadwick
117
75 kgPedraza
118
58 kgChalapud
137
63 kg
Weight (KG) →
Result →
78
55
18
137
# | Rider | Weight (KG) |
---|---|---|
18 | GUTIÉRREZ José Enrique | 78 |
21 | RUBIANO Miguel Angel | 58 |
23 | LAVERDE Luis Felipe | 63 |
25 | DUARTE Fabio | 55 |
26 | SEVILLA Óscar | 62 |
29 | PEÑA Victor Hugo | 65 |
43 | BOTERO Santiago | 75 |
52 | GONZÁLEZ Freddy Excelino | 55 |
60 | PARRA Iván Ramiro | 62 |
67 | GIL MARTINEZ Tomas Aurelio | 60 |
70 | BELTRÁN Edward | 59 |
85 | WILCHES Juan Pablo | 56 |
88 | GÁLVIZ Carlos Johan | 65 |
93 | ZAPATA Javier de Jesús | 62 |
108 | MANCEBO Francisco | 64 |
117 | CHADWICK Glen Alan | 75 |
118 | PEDRAZA Wálter Fernando | 58 |
137 | CHALAPUD Robinson | 63 |