Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
González
3
55 kgSevilla
4
62 kgPedraza
7
58 kgPeña
17
65 kgGutiérrez
19
78 kgRubiano
24
58 kgWilches
27
56 kgLaverde
28
63 kgGil Martinez
32
60 kgBotero
43
75 kgZapata
53
62 kgGálviz
55
65 kgParra
60
62 kgChadwick
64
75 kgBeltrán
69
59 kgMancebo
105
64 kgDuarte
118
55 kgChalapud
139
63 kg
3
55 kgSevilla
4
62 kgPedraza
7
58 kgPeña
17
65 kgGutiérrez
19
78 kgRubiano
24
58 kgWilches
27
56 kgLaverde
28
63 kgGil Martinez
32
60 kgBotero
43
75 kgZapata
53
62 kgGálviz
55
65 kgParra
60
62 kgChadwick
64
75 kgBeltrán
69
59 kgMancebo
105
64 kgDuarte
118
55 kgChalapud
139
63 kg
Weight (KG) →
Result →
78
55
3
139
# | Rider | Weight (KG) |
---|---|---|
3 | GONZÁLEZ Freddy Excelino | 55 |
4 | SEVILLA Óscar | 62 |
7 | PEDRAZA Wálter Fernando | 58 |
17 | PEÑA Victor Hugo | 65 |
19 | GUTIÉRREZ José Enrique | 78 |
24 | RUBIANO Miguel Angel | 58 |
27 | WILCHES Juan Pablo | 56 |
28 | LAVERDE Luis Felipe | 63 |
32 | GIL MARTINEZ Tomas Aurelio | 60 |
43 | BOTERO Santiago | 75 |
53 | ZAPATA Javier de Jesús | 62 |
55 | GÁLVIZ Carlos Johan | 65 |
60 | PARRA Iván Ramiro | 62 |
64 | CHADWICK Glen Alan | 75 |
69 | BELTRÁN Edward | 59 |
105 | MANCEBO Francisco | 64 |
118 | DUARTE Fabio | 55 |
139 | CHALAPUD Robinson | 63 |