Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Sevilla
3
62 kgLaverde
7
63 kgGonzález
8
55 kgDuarte
9
55 kgParra
11
62 kgBotero
12
75 kgZapata
21
62 kgChadwick
22
75 kgGálviz
23
65 kgPeña
25
65 kgPedraza
41
58 kgWilches
42
56 kgRubiano
43
58 kgBeltrán
51
59 kgMancebo
55
64 kgGil Martinez
59
60 kgGutiérrez
65
78 kgChalapud
120
63 kg
3
62 kgLaverde
7
63 kgGonzález
8
55 kgDuarte
9
55 kgParra
11
62 kgBotero
12
75 kgZapata
21
62 kgChadwick
22
75 kgGálviz
23
65 kgPeña
25
65 kgPedraza
41
58 kgWilches
42
56 kgRubiano
43
58 kgBeltrán
51
59 kgMancebo
55
64 kgGil Martinez
59
60 kgGutiérrez
65
78 kgChalapud
120
63 kg
Weight (KG) →
Result →
78
55
3
120
# | Rider | Weight (KG) |
---|---|---|
3 | SEVILLA Óscar | 62 |
7 | LAVERDE Luis Felipe | 63 |
8 | GONZÁLEZ Freddy Excelino | 55 |
9 | DUARTE Fabio | 55 |
11 | PARRA Iván Ramiro | 62 |
12 | BOTERO Santiago | 75 |
21 | ZAPATA Javier de Jesús | 62 |
22 | CHADWICK Glen Alan | 75 |
23 | GÁLVIZ Carlos Johan | 65 |
25 | PEÑA Victor Hugo | 65 |
41 | PEDRAZA Wálter Fernando | 58 |
42 | WILCHES Juan Pablo | 56 |
43 | RUBIANO Miguel Angel | 58 |
51 | BELTRÁN Edward | 59 |
55 | MANCEBO Francisco | 64 |
59 | GIL MARTINEZ Tomas Aurelio | 60 |
65 | GUTIÉRREZ José Enrique | 78 |
120 | CHALAPUD Robinson | 63 |